Proyecciones Journal of Mathematics Vol. 35, N° 2, pp. 159-176, June 2016. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172016000200002

A generalization of Drygas functional equation

A. Charifi M. Almahalebi and S. Kabbaj

Ibn Tofail University, Morocco Received: April 2015. Accepted: April 2016

Abstract

 $\begin{array}{l} \sum_{\lambda\in\Phi}f(x+\lambda y+a_{\lambda})=\kappa f(x)+\sum_{\lambda\in\Phi}f(\lambda y),\;x,y\in S,\\ where\;S\;\;is\;an\;abelian\;semigroup,\;G\;is\;an\;abelian\;group,\;f\in G^S,\;\Phi\\ is\;a\;finite\;automorphism\;group\;of\;S\;with\;order\;\kappa,\;and\;a_{\lambda}\in S,\;\lambda\in\Phi. \end{array}$

Subj
class 2010 Mathematics Subject Classification (MSC) :
 $20B25;\ 39B52;\ 47B39;\ 65Q20.$

Keywords and Phrases: Automorphism group; difference operator; Drygas functional equation.

1. Introduction

Characterizing quasi-inner product spaces, Drygas considers in [9] the functional equation $f(x)+f(y)=f(x-y)+\left\{f\left(\frac{x+y}{2}\right)-f\left(\frac{x-y}{2}\right)\right\}$ which can be reduced to the following equation (see [21], Remark 9.2, p. 131)

(1.1)
$$f(x+y) + f(x-y) = 2f(x) + f(y) + f(-y), x, y \in \mathbf{R}$$

where \mathbf{R} denotes the set of real numbers.

This equation is known in the literature as *Drygas equation* and is a generalization of the quadratic functional equation

(1.2)
$$f(x+y) + f(x-y) = 2f(x) + 2f(y), \ x, y \in \mathbf{R}.$$

The general solution of Drygas equation was given by Ebanks, Kannappan and Sahoo in [10]. It has the form

$$f(x) = A(x) + Q(x),$$

where $A: \mathbf{R} \longrightarrow \mathbf{R}$ is an additive function and $Q: \mathbf{R} \longrightarrow \mathbf{R}$ is a quadratic function, see also [17]. A set-valued version of Drygas equation was considered by Smajdor in [23]. The Drygas functional equation on an arbitrary group G takes the form

(1.3)
$$f(xy) + f(xy^{-1}) = 2f(x) + f(y) + f(y^{-1}).$$

The solutions of Drygas equation in abelian group are obtained by Stetkær in [24]. Various authors studied the Drygas equation, for example Ebanks et al. [10], Faiziev and Sahoo [11], Jung and Sahoo [17], Łukasik [18], Szabo [26], Yang [27].

There are several functional equations reduced to those of the Drygas functional equation (1.1), i.e. the mixed type additive, quadratic, Jensen and Pexidered equations, we refer, for example, to [1],[2],[4]-[8], [11]-[16], [19].

The present paper is actually a natural extension and complement to the work of Bouikhalene et al [4], Lukasik [18], Sinopoulos [22], Stetkær [25] and many others [2],[3], [10],[20].

We wish through this work to bring and share answers about two aspects: the characterization for solutions of the following Drygas equation

(1.4)
$$\sum_{\lambda \in \Phi} f(x + \lambda y + a_{\lambda}) = \kappa f(x) + \sum_{\lambda \in \Phi} f(\lambda y), \ x, y \in S,$$

where $f: S \to G$ is a mapping, S is an abelian semigroup, G is an abelian group, Φ is a finite automorphism group of S, $a_{\lambda} \in S$, $\lambda \in \Phi$, then to give illustrative examples of such situations.

This equation is an extension form of several equations, for examples,

$$\begin{split} f(x+y) + f(x-y) &= 2f(x) + f(y) + f(-y), \ x,y \in S, \\ f(x+y+a) + f(x+y+b) &= 2f(x) + 2f(y), \ x,y \in S, \\ f(x+y+a) + f(x-y+b) &= 2f(x) + f(y) + f(-y), \ x,y \in S, \\ f(x+y+a) + f(x+\sigma y+b) &= 2f(x) + 2f(y), \ x,y \in S, \\ f(x+y) + f(x+\sigma(y)) &= 2f(x) + f(y) + f(\sigma(y)), \ x,y \in S, \\ f(x+y) + f(x+\sigma(y)) &= 2f(x), \ x,y \in S, \\ &\sum_{k=0}^{m-1} f(x+e^{\frac{2i\pi k}{m}}y) = mf(x) + \sum_{k=0}^{m-1} f(e^{\frac{2i\pi k}{m}}y), \ x,y \in S = G = \mathbf{C}, \ m \in \mathbf{N}^*, m \geq 2, \end{split}$$

and
$$\sum_{k=0}^{m-1} f(x + e^{\frac{2i\pi k}{m}}y + a_i) = mf(x), \ x, y \in S = G = \mathbf{C}, \ m \in \mathbf{N}^*, m \ge 2,$$

for $a, b, a_1, ..., a_{m-1} \in \mathbf{C}$ where \mathbf{N}^* is the set of nonnegative numbers and where \mathbf{C} is the set of all complex numbers.

2. Background results

Let **Z** designate the set of integers numbers and G^S the **Z**-module consisting of all maps from an abelian semigroup S into an abelian group G. Let $n \in \mathbb{N}^*$ and $\mathcal{A}_n \in G^{S^n}$ be a function, then we say that \mathcal{A}_n is n-additive provided that

$$\mathcal{A}_n(x_1+y_1,...,x_j+y_j,...,x_n+y_n) = \mathcal{A}_n(x_1,...,x_j,...,x_n) + \mathcal{A}_n(y_1,...,y_j,...,y_n),$$

for all $x_1, ..., x_j, ..., x_1, y_1, ..., y_j, ..., y_n \in E$; we say that \mathcal{A}_n is symmetric provided that

$$A_n(x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)}) = A_n(x_1, x_2, ..., x_n)$$

whenever $x_1, x_2, ..., x_n \in S$ and σ is a permutation of $\{1, 2, ..., n\}$.

If $k \in \mathbf{N}^*$ and $\mathcal{A}_k \in G^{S^k}$ is symmetric and k-additive, let $\mathcal{A}_k^*(x) = \mathcal{A}_k(\underbrace{x,...,x})$ for all $x \in S$. And note that $\mathcal{A}_k^*(rx) = r^k \mathcal{A}_k^*(x)$ whenever $x \in S$ and $r \in \mathbf{N}$ also we note that

$$\mathcal{A}_k(x+h,...,x+h) = \sum_{i=0}^k C_k^i \mathcal{A}_k(\underbrace{x,...,x}_i,\underbrace{h,...,h}_{k-i}), \ x,h \in S.$$

The function \mathcal{A}_k^* is called a *monomial* function of degree k associated to \mathcal{A}_k .

A function $p \in G^S$ is called a generalized polynomial function of degree n provided there exist $A_0 \in S$ and monomial functions A_k^* (for $1 \le k \le n$) such that

$$p(x) = \mathcal{A}_0 + \sum_{i=1}^n \mathcal{A}_k^*(x),$$

for all $x \in S$. We also need to recall the definition of the *linear difference* operator Δ_h , $h \in S$ on G^S by

$$\Delta_h f(x) = f(x+h) - f(x), \ h, \ x \in S.$$

Notice that these difference operators have important properties such as the linearity property

$$\Delta_h(\alpha f + \beta g) = \alpha \Delta_h(f) + \beta \Delta_h(g), f, g \in G^S, \alpha, \beta \in \mathbf{Z},$$

and the commutativity property

$$\triangle_{h_1}\triangle_{h_2}...\triangle_{h_s} = \triangle_{h_1h_2...h_s} = \triangle_{h_{\sigma(1)}h_{\sigma(2)}...h_{\sigma(s)}},$$

where σ is a permutation of $\{1, 2, ..., n\}$. There are also other properties such as

$$\Delta_h^n f(x) = \sum_{i=0}^n (-1)^{n-i} C_n^i f(x+ih)$$

and if $\mathcal{A}_m: S^m \to G$ is a symmetric and m-additive mapping, then we have

$$\triangle_{h_1...h_k} \mathcal{A}_m^*(x) = \begin{cases} m! \mathcal{A}_m(h_1, ..., h_m), & \text{if } k = m \\ 0, & \text{if } k > m \end{cases}.$$

We will finish this section with some results which we will need in the sequel. Before that, we need to know that every abelian group G is said to be n!-divisible group when it is divisible uniquely by n! where $n \in \mathbb{N}^*$.

Theorem 1. [3],[7],[12],[14],[18],[19]

Let G be an abelian group n!-divisible, $n \in \mathbf{N}^*$ and $f \in G^S$, then the following assertions are equivalent.

- 1. $\triangle_h^n f(x) = 0, x, h \in S$.
- 2. $\triangle_{h_1...h_n} f(x) = 0, x, h_1, ..., h_n \in S$.
- 3. f is a generalized polynomial function of degree at most n-1.

Lemma 1. [18] Let G be an abelian group n!-divisible, $n \in \mathbb{N}^*$, $x_1, x_2, ..., x_n \in G$, then the following properties are fulfilled.

1.
$$(2.1) \qquad \sum_{k=1}^{n} (-1)^{n-k} C_n^k k^i = 0, \ i \in \{1, 2, ..., n-1\}, n \neq 1$$
 and
$$(2.2) \qquad \sum_{k=1}^{n} (-1)^{n-k} C_n^k k^n = n!.$$

2.

(2.3) If
$$\sum_{i=1}^{n} k^{i} x_{i} = 0$$
, $k \in \{1, ..., n\}$, then $x_{1} = x_{2} = ... = x_{n} = 0$.

3. Main results

Using the difference operator, we adopt the operatorial approach to characterize the solutions of Drygas equation (1.4) which is not a Jensen equation or a quadratic equation.

In the remainder of this paper, we denote by S an abelian semigroup and by G an abelian $(\kappa+1)!$ -divisible group. However, a solution f of Drygas equation (1.4) in the semigroup S can be extended to the monoid $S \cup \{0\}$ (i.e. by adding the zero element to S) by setting the value of f to zero. We will then, $f(0) = \frac{1}{2\kappa} \sum_{\lambda \in \Phi} f(a_{\lambda})$. Without alter the generality of the problem studied and if necessary, we will assume that S admit a zero element.

Lemma 2. Let Φ be a finite automorphism group of S, $\kappa = card\Phi$, $a_{\lambda} \in S$ $(\lambda \in \Phi)$, $A_0 \in G$ and $A_i \in G^{S^i}$ $(1 \le i \le \kappa)$ be symmetric and i-additive mappings such that

(3.1)
$$p(x) = A_0 + \sum_{i=1}^{\kappa} A_i^*(x), \quad x \in S$$

and

$$(3.2) \quad I_p(x,y) = \sum_{\lambda \in \Phi} p(x + \lambda y + a_\lambda) - \kappa p(x) - \sum_{\lambda \in \Phi} p(\lambda y), \ x, y \in S.$$

Then we have the following

(a)
$$I_p(0,0) = \sum_{\lambda \in \Phi} \sum_{i=1}^{\kappa} \mathcal{A}_i(a_{\lambda}) - \kappa \mathcal{A}_0$$

(3.3)

and

(b)
$$I_{p}(x,y) = I_{p}(0,0) + \sum_{\lambda \in \Phi} \sum_{j=0}^{\kappa-1} \sum_{k=0}^{\kappa-1} \sum_{2 \leq i=\max}^{\kappa} C_{i}^{j} C_{i-j}^{k} \mathcal{A}_{i}(\underbrace{x,...,x}_{k},a_{\lambda},...,a_{\lambda},\underbrace{\lambda y,...,\lambda y}_{j}),$$
(3.4)

for all $x, y \in S$, where $max = max\{j+1, k+1, j+k\}$.

Proof. By direct calculation, we show that

$$I_p(0,0) = \sum_{\lambda \in \Phi} p(a_{\lambda}) - 2\kappa p(0).$$

Thus, by replacing p by its expression of A_i , $0 \le i \le \kappa$ we obtain (a). For every $x, y \in S$, we have

$$I_{p}(x,y)$$

$$= \kappa \mathcal{A}_{0} + \sum_{\lambda \in \Phi} \left(\sum_{i=1}^{\kappa} \left(\mathcal{A}_{i}^{*}(x + \lambda y + a_{\lambda}) \right) \right) - \sum_{\lambda \in \Phi} \left(p(x) + p(\lambda y) \right)$$

$$= \sum_{\lambda \in \Phi} \left(\sum_{i=1}^{\kappa} \left(\sum_{j=0}^{i} C_{i}^{j} \mathcal{A}_{i}(x + a_{\lambda}, ..., x + a_{\lambda}, \underbrace{\lambda y, ..., \lambda y}_{j}) \right) \right) - \sum_{i=1}^{\kappa} \kappa \mathcal{A}_{i}^{*}(x)$$

$$- \sum_{\lambda \in \Phi} \mathcal{A}_{i}^{*}(\lambda y) - \kappa \mathcal{A}_{0}$$

$$= \sum_{\lambda \in \Phi} \left(\sum_{i=1}^{\kappa} \left(\sum_{j=0}^{i} C_{i}^{j} \sum_{k=0}^{i-j} C_{i-j}^{k} \mathcal{A}_{i}(\underbrace{x, ..., x}_{k}, a_{\lambda}, ..., a_{\lambda}, \underbrace{\lambda y, ..., \lambda y}_{j}) \right) \right)$$

$$-\sum_{i=1}^{\kappa} \kappa \mathcal{A}_{i}^{*}(x)$$

$$-\sum_{\lambda \in \Phi} \mathcal{A}_{i}^{*}(\lambda y) - \kappa \mathcal{A}_{0}$$

$$= I_{p}(0,0) + \sum_{\lambda \in \Phi} \sum_{j=0}^{\kappa-1} \sum_{k=0}^{\kappa-1} \sum_{2 \leq i=\max\{j+1,k+1,j+k\}}^{\kappa} C_{i}^{j} C_{i-j}^{k}$$

$$\mathcal{A}_{i}(\underbrace{x,...,x}_{k}, a_{\lambda},..., a_{\lambda}, \underbrace{\lambda_{y},...,\lambda_{y}}_{j}),$$

from where (b) follows. \square

Lemma 3. Let Φ be a finite automorphism group of S, $\kappa = card\Phi$, $a_{\lambda} \in S$ $(\lambda \in \Phi)$, $A_0 \in G$ and $A_i \in G^{S^i}$ $(1 \le i \le \kappa)$ be symmetric and i-additive mappings such that

(3.5)
$$p(x) = A_0 + \sum_{i=1}^{\kappa} A_i^*(x), \ x \in S$$

and

(3.6)
$$I_p(x,y) = \sum_{\lambda \in \Phi} p(x + \lambda y + a_\lambda) - \kappa p(x) - \sum_{\lambda \in \Phi} p(\lambda y), \ x, y \in S.$$

Then the following are equivalent.

1.
$$I_p(x,y) = 0, \ x, y \in S.$$

2. p is a solution of Eq. (1.4).

and

3. $A_0 \in G$ and the mappings A_i , $1 \le i \le \kappa$, satisfy the following two equalities,

a)
$$\sum_{\lambda \in \Phi} \sum_{i=1}^{\kappa} \mathcal{A}_{i}^{*}(a_{\lambda}) = \kappa \mathcal{A}_{0}$$

b)
$$\sum_{i=max}^{\kappa} C_{i}^{j} C_{i-j}^{k} \sum_{\lambda \in \Phi} \mathcal{A}_{i}(\underbrace{x, x, ..., x}_{k}, a_{\lambda}, ..., a_{\lambda}, \underbrace{\lambda y, \lambda y, ..., \lambda y}_{j}) = 0, \ x, y \in S,$$
(3.9)
$$0 \leq k \leq \kappa - 1, \ 0 \leq j \leq \kappa - 1, \ 2 \leq i = max = max\{k + 1, j + 1, j + k\} \leq \kappa.$$

Proof. Note first that by Lemma 2 the condition (2) is satisfied if and only if the condition (1) is satisfied. Suppose that (1) is satisfied, then by Lemma 2 we obtain (3)(a) and we have:

$$I_{p}(x,y) = \sum_{\lambda \in \Phi} \sum_{j=0}^{\kappa-1} \sum_{k=0}^{\kappa-1} \sum_{2 \leq i=\max(j+1,k+1,j+k)}^{\kappa} C_{i}^{j} C_{i-j}^{k}$$

$$\mathcal{A}_{i}(\underbrace{x,...,x}_{k}, a_{\lambda},..., a_{\lambda}, \underbrace{\lambda y,...,\lambda y}_{j}) = 0,$$
(3.10)

for all $x, y \in S$. To prove (3) we define, for every $0 \le j \le \kappa - 1$, $0 \le k \le \kappa - 1$ the mappings g_j , $h_{(k,j)}: S \times S : \to G$ by

$$g_j(x,y) = \sum_{\lambda \in \Phi} \sum_{k=0}^{\kappa-1} \sum_{i=j+k}^{\kappa} C_i^j C_{i-j}^k \mathcal{A}_i(\underbrace{x,...,x}_k, a_\lambda, ..., a_\lambda, \underbrace{\lambda y, ..., \lambda y}_i), \ x, y \in S,$$

$$h_{(k,j)}(x,y) = \sum_{\lambda \in \Phi} \sum_{1 \le i=j+k}^{\kappa} C_i^j C_{i-j}^k \mathcal{A}_i(\underbrace{x,...,x}_k, a_\lambda, ..., a_\lambda, \underbrace{\lambda y,...,\lambda y}_i), \quad x,y \in S.$$

Note that,

$$I_p(x,y) = \sum_{j=0}^{\kappa-1} g_j(x,y), \sum_{k=0}^{\kappa-1} h_{(k,j)}(x,y) = g_j(x,y)$$

and

$$g_0(x,y) = h_{(0,j)}(x,y) = h_{(k,0)}(x,y) = 0$$
, for all $x,y \in S$. However, as $g_i(x,ny) = n^j g_i(x,y), n \in \mathbf{N}^*, x,y \in S, 0 \le j \le \kappa - 1$,

we have

$$\sum_{j=0}^{\kappa-1} n^j g_j(x,y) = \sum_{j=0}^{\kappa-1} g_j(x,ny) = 0, \ n \in \mathbf{N}^*, \ x,y \in S.$$

By Lemma 1, we get

$$g_j(x,y) = 0, \quad x, y \in S, \ 0 \le j \le \kappa - 1.$$

We deduced from the definition of $h_{(k,j)}$ that

 $h_{(k,j)}(nx,y) = n^k h_{(k,j)}(x,y), \quad n \in \mathbf{N}^*, \ x,y \in S, \ 0 \le k \le \kappa - j, \ 0 \le j \le \kappa - 1,$ and we have

$$\sum_{k=0}^{\kappa-1} n^k h_{(k,j)}(x,y) = \sum_{k=0}^{\kappa-1} h_{(k,j)}(nx,y) = g_j(nx,y) = 0, \ n \in \mathbf{N}^*, \ x, y \in S,$$
$$0 \le j \le \kappa - 1.$$

By the same manner as above we obtain

$$h_{(k,j)}(x,y) = 0, \ j \in \{0,...,\kappa-1\}, \ k \in \{0,...,\kappa-1\}.$$

Thus, Lemma 1 gives the expected result, (3)(b). The converse of this implication is immediate. This completes the proof. \Box

Lemma 4. Let Φ be a finite automorphism group of S, $\kappa = card\Phi$, $a_{\lambda} \in S$ $(\lambda \in \Phi)$, and $f \in G^S$ such that

(3.11)
$$\sum_{\lambda \in \Phi} f(x + \lambda y + a_{\lambda}) = \kappa f(x) + \sum_{\lambda \in \Phi} f(\lambda y), \quad x, y \in S.$$

Then, for every $x, y \in S$, $\Delta_u^{\kappa} f(x)$ is independent of x and we have

(3.12)
$$\Delta_y^{\kappa+1} f(x) = 0, \quad x, y \in S.$$

Proof. The proof used here goes along the same lines as the one in [18]. We will denote by $\Phi_{i,j} \subset \Phi$, $i \in \{0,...,\kappa\}$, $j \in \{1,...,C_{\kappa}^i\}$ the C_{κ}^i pairwise different sets such that $card\Phi_{i,j} = \kappa - i$ and by $g \in G^S$, the application defined by

$$g(y) = -\sum_{i=0}^{\kappa} (-1)^{\kappa - i} \sum_{j=1}^{C_{\kappa}^{i}} f\left(\sum_{\lambda \in \mathcal{G}_{i,j}} \lambda y\right), \quad y \in S.$$

Let $\lambda \in \Phi$, $i \in \{0, ..., \kappa\}$ and $j \in \{1, ..., C_{\kappa}^i\}$, then the set $\lambda \Phi_{ij} \subset \Phi$ has $\kappa - i$ elements. So, there is $k \in \{1, ..., C_{\kappa}^i\}$ satisfies the following two equalities

$$\lambda \Phi_{ij} = \Phi_{i,k}$$
 and $\lambda^{-1} \Phi_{i,k} = \Phi_{i,j}$.

It follows,

$$(3.13) \qquad \sum_{j=1}^{C_\kappa^i} f\left(\sum_{\mu \in \Phi_{i,j}} \lambda \mu y\right) = \sum_{j=1}^{C_\kappa^i} f\left(\sum_{\mu \in \Phi_{i,j}} \mu y\right), \ \ x \in S.$$

For given x, y, we set

$$u_i = x + iy, \ v_{ij} = \sum_{\mu \in \Phi_{i,j}} \mu y, \ i \in \{0, ..., \kappa\}, \ j \in \{1, ..., C_{\kappa}^i\}.$$

Otherwise, let $\lambda \in \Phi$, $i \in \{0,...,\kappa\}$ and $j \in \{1,...,C_{\kappa}^i\}$, then we have the following two cases:

Case 1. Let $\lambda^{-1} \in \Phi_{i,j}$, then $i \neq \kappa$ and, $\Phi_{i,j} = \Phi_{i+1,j} \cup {\lambda^{-1}}$. It follows that

$$u_i + \lambda v_{ij} = x + iy + \sum_{\mu \in \Phi_{i,j}} \lambda \mu y$$
$$= x + (i+1)y + \sum_{\mu \in \Phi_{i+1,k}} \lambda \mu y$$
$$= u_{i+1} + \lambda v_{i+1,k},$$

for a suitable k in $\{1,...,C_{\kappa}^{i+1}\}$.

Case 2. Let $\lambda^{-1} \in \Phi_{i,j}$, then $i \neq 0$ and, $\Phi_{i-1,j} = \Phi_{i,j} \cup {\lambda^{-1}}$. We can write,

$$u_i + \lambda v_{i,j} = x + iy + \sum_{\mu \in \Phi_{i,j}} \lambda \mu y$$
$$= x + (i-1)y + \sum_{\mu \in \Phi_{i-1,k}} \lambda \mu y$$
$$= u_{i-1} + \lambda v_{i-1,k},$$

for a suitable k in $\{1, ..., C_{\kappa}^{i+1}\}$. Taking into account (3.13) and the calculation results of the previous two cases, we have:

$$\kappa \Delta_{y}^{\kappa} f(x) - \kappa g(y)
= \kappa \sum_{i=0}^{\kappa} (-1)^{\kappa - i} C_{\kappa}^{i} f(x + iy) + \kappa \sum_{i=0}^{\kappa - 1} (-1)^{\kappa - i} \sum_{j=1}^{C_{\kappa}^{i}} f\left(\sum_{\mu \in \Phi_{i,j}} \mu y\right)
= \kappa \sum_{i=0}^{\kappa} (-1)^{\kappa - i} C_{\kappa}^{i} f(x + iy +) + \sum_{i=0}^{\kappa - 1} (-1)^{\kappa - i} \sum_{j=1}^{C_{\kappa}^{i}} \sum_{\lambda \in \Phi} f\left(\sum_{\mu \in \Phi_{i,j}} \lambda \mu y\right)
= \sum_{i=0}^{\kappa} (-1)^{\kappa - i} \sum_{j=1}^{C_{\kappa}^{i}} \left(\kappa f(u_{i}) + \sum_{\lambda \in \Phi} f(\lambda v_{ij})\right)
= \sum_{i=0}^{\kappa} (-1)^{\kappa - i} \sum_{j=1}^{C_{\kappa}^{i}} \sum_{\lambda \in \Phi} f(u_{i} + \lambda v_{ij} + a_{\lambda})
= 0, x, y \in S.$$

This shows that for every $x, y \in S$, $\Delta_y^{\kappa} f(x)$ is independent of x and

$$\Delta_y^{\kappa} f(x+y) - \Delta_y^{\kappa} f(x) = 0, \ x, y \in S,$$

and more accurately

$$\Delta_y^{\kappa+1} f(x) = 0, \ x, y \in S,$$

from which the desired result follows. \Box

Remark 1. Under the assumptions of Lemma 4, if in addition we assume that

$$\sum_{\lambda \in \Phi} f(\lambda y) = 0, \ y \in S,$$

then

$$\Delta_y^{\kappa} f(x) = 0, \ x, y \in S.$$

Theorem 2. Let $f \in G^S$, Φ a finite automorphism group of S, $\kappa = card\Phi$ and $a_{\lambda} \in S$ ($\lambda \in \Phi$). Then the function $f : S \to G$ is a solution of equation

(3.14)
$$\sum_{\lambda \in \Phi} f(x + \lambda y + a_{\lambda}) = \kappa f(x) + \sum_{\lambda \in \Phi} f(\lambda y), \ x, y \in S,$$

if and only if f has the following form

(3.15)
$$f(x) = A_0 + \sum_{i=1}^{\kappa} A_i^*(x), \ x \in S,$$

where $A_0 \in G$ and $A_k : S^k \to G$, $k \in \{1, 2, ..., \kappa\}$ are symmetric and k-additive functions satisfying the two conditions:

i)
$$\sum_{i=max}^{\kappa} C_i^j C_{i-j}^k \sum_{\lambda \in \Phi} \mathcal{A}_i(\underbrace{x, x, ..., x}_{k}, a_{\lambda}, ..., a_{\lambda}, \underbrace{\lambda y, \lambda y, ..., \lambda y}_{j}) = 0, \ x, y \in S,$$

$$0 \le k \le \kappa - 1, \ 0 \le j \le \kappa - 1, \ 2 \le max = max\{j+1, k+1, k+j\} \le j \le \kappa \text{ and } s \in S$$

ii)
$$\sum_{\lambda \in \Phi} \sum_{i=1}^{\kappa} \mathcal{A}_i^*(a_\lambda) = \kappa \mathcal{A}_0.$$

Proof. The necessary condition is obtained by Lemma 4, Theorem 1 and Lemma 3. By Lemma 3 we get the sufficient condition which completes the proof of Theorem. \Box

Remark 2. Under the assumptions of Theorem 2, if in addition we assume that

$$\sum_{\lambda \in \Phi} f(\lambda y) = 0, \ y \in S,$$

then the result (with some modifications on the control of indices i, j and k) can be obtained by requiring the assumption "G is κ !-divisible" instead of "G is $(\kappa+1)$!-divisible".

4. Consequences

The following corollaries are immediate consequences of Theorem 2. On this occasion, we obtain the following three corollaries 1, 2 and 3 which have been proved by Sinopoulos [22], Stetkær [25], Łukasik [18], Bouikhalene and Elqorachi [4] respectively.

Corollary 1. [22][25] Let $\sigma: S \to S$ be an involution of S and G be an abelian group divisible by 2. Then the function $f: S \to G$ is a solution of equation

$$(4.1) \quad f(x+y) + f\Big(x+\sigma(y)\Big) = 2f(x) + f(y) + f\Big(\sigma(y)\Big), \quad x, y \in S$$

if and only if f has the following form

(4.2)
$$f(x) = A_1(x) + A_2^*(x), x \in S,$$

where $A_1: S \to G$ is an arbitrary additive function and $A_2: S \times S \to G$ is an arbitrary symmetric biadditive function with $A_2(x,y) + A_2(x,\sigma(y)) = 0$, $x,y \in S$.

Corollary 2. [18] Let S be an abelian semigroup, G be an abelian group divisible by $\kappa!$, Φ be a finite automorphism group of S with order κ . Then the function $f: S \to G$ is a solution of equation

(4.3)
$$\sum_{\lambda \in \Phi} f(x + \lambda y) = \kappa f(x) + \sum_{\lambda \in \Phi} f(\lambda y), \ x, y \in S,$$

if and only if f has the following form

(4.4)
$$f(x) = \sum_{i=1}^{\kappa} \mathcal{A}_{i}^{*}(x), \ x \in S,$$

where $A_k: S^k \to G$, $k \in \{1, 2, ..., \kappa\}$ are arbitrary symmetric and k-additive functions which satisfy the following condition:

$$\sum_{\lambda \in \Phi} \mathcal{A}_i(x, x, ..., x, \underbrace{\lambda y, \lambda y, ..., \lambda y}_j) = 0, \ x, y \in S, \quad 1 \le j \le i - 1, \ 2 \le i \le \kappa.$$

Proof. In this case, with the notations of Theorem 2, as $\{a_{\lambda}, \lambda \in \Phi\} = \{0\}, k+j=i$.

Furthermore, we can write that

$$0 = \sum_{i=\max(k+j,k+1)} C_i^k C_j^{i-j} \sum_{\lambda \in \Phi} \mathcal{A}_i k(\underline{x,...,x}, a_{\lambda}, ..., a_{\lambda}, \underline{j\lambda y,..., \lambda y})$$

$$= \sum_{i=k+j}^{\kappa} C_i^k \sum_{\lambda \in \Phi} \mathcal{A}_i k(\underline{x,...,x}, \underline{j\lambda y,..., \lambda y})$$

$$= \sum_{j=1}^{i-1} C_i^k \sum_{\lambda \in \Phi} \mathcal{A}_i (x,...,x, \underline{j\lambda y,..., \lambda y}), \ x, y \in S, \ 2 \le i \le \kappa.$$

For $1 \leq j \leq i-1$, $2 \leq i \leq \kappa$, we define the mappings $q_{(j,i)}: S \times S \to G$ by

$$q_{(j,i)}(x,y) = C_i^j \sum_{\lambda \in \Phi} \mathcal{A}_i(x,...,x,j\underbrace{\lambda y, \lambda y,...,\lambda y}) \ x,y \in S.$$

So, we have

$$q_{(j,i)}(x, ny) = n^j q_{(j,i)}(x, y), \ x, y \in S, \ n \in \mathbf{N}^*, \ 0 \le j \le i - 1, \ 2 \le i \le \kappa$$
 and

$$\sum_{j=1}^{\kappa} n^j q_{(j,i)}(x,y) = \sum_{j=1}^{\kappa} q_{(j,i)}(x,ny) = 0, \ x,y \in S, \ 2 \le i \le \kappa.$$

According to Lemma we get the sought result. \Box

Corollary 3. [4] Let S be an abelian group, G be a Banach space and $a \in S$. Then, the general solution $f: S \to G$ of the functional equation

$$(4.5) f(x+y+a) = f(x) + f(y), x, y \in S,$$

is

$$(4.6) f(x) = \mathcal{A}_1(a) + \mathcal{A}_1(x), x \in S.$$

where $A_1: S \to G$ is an arbitrary additive function.

In the following corollaries we prove new others special cases of the equation 1.4 that is, according to our knowledge, not in the literature.

Corollary 4. Let S be an abelian semigroup, G be an abelian group divisible by 2 and $a,b \in S$. Then, the general solution $f:S \to G$ of the functional equation

$$(4.7) f(x+y+a) + f(x-y+b) = 2f(x) + f(y) + f(-y), x, y \in S,$$

is

(4.8)
$$f(x) = \frac{1}{2} \left(\mathcal{A}_1(a+b) \right) + \mathcal{A}_1(x) + \mathcal{A}_2^*(x), x \in S$$

where $A_1: S \to G$ is an arbitrary additive function and $A_2: S \times S \to G$ is an arbitrary symmetric biadditive function with $A_2(x, a) = A_2(x, b) = 0$, $x \in S$.

Corollary 5. Let S be an abelian semigroup, σ be an involution of S, G be an abelian group divisible by 2 and $a, b \in S$. Then, the general solution $f: S \to G$ of the functional equation

$$(4.\mathfrak{Y}(x+y+a)+f(x+\sigma(y)+b)=2f(x)+f(y)+f(\sigma(y)),\ x,y\in S,$$

is

(4.10)
$$f(x) = \frac{1}{2} (\mathcal{A}_1(a+b)) + \mathcal{A}_1(x) + \mathcal{A}_2^*(x), x \in S,$$

where $A_1: S \to G$ is an arbitrary additive function and $A_2: S \times S \to G$ is an arbitrary symmetric biadditive function with

$$A_2(x,a) = A_2(x,b) = 0, x \in S \text{ and } A_2(x,y) + A_2(x,\sigma(y)) = 0, x,y \in S.$$

Proof. Keeping in mind the notation of Theorem 2, we apply it where $\kappa = 2$. Then there are an element $\mathcal{A}_0 \in G$ and symmetric *i*-additives mappings $\mathcal{A}_i \in G^{S^i}$, $i \in \{1, 2\}$ satisfy

- 1. $f(x) = A_0 + A_1(x) + A_2^*(x)$, $x \in S$ on the other side, they satisfy the following conditions of Theorem 2:
- 2. i) $k = 0, j = 1, A_2(a, y) + A_2(b, \sigma(y)) = 0, y \in S$,

ii)
$$k = 1, j = 0, A_2(y, a) + A_2(y, b) = 0, y \in S$$
,

iii)
$$k = 1, j = 1, A_2(x, y) + A_2(x, \sigma(y)) = 0, x, y \in S.$$

Thus,
$$A_2(y, a) = A_2(y, b) = 0$$
, $y \in S$; $A_2(x, y) + A_2(x, \sigma(y)) = 0$, $x, y \in S$ and $2A_0 = A_1(a + b)$. \square

Corollary 6. Let j be a primitive cube root of unity and a be complex number. Then, the general continuous solution $f: \mathbf{C} \to \mathbf{C}$ of the functional equation

$$f(x+y+ja)+f(x+jy+j^2a)+f(x+j^2y+a)=3f(x)+f(y)+f(jy)+f(j^2y), \ x,y\in {\bf C}, \ (4.11)$$

is of the form

$$(4.12) f(x) = \alpha_1 x + \beta_1 \overline{x} + \alpha_2 x^2 + \beta_2 \overline{x}^2,$$

where $\alpha_1, \beta_1, \alpha_2, \beta_2 \in \mathbf{C}$.

Proof. According the Theorem 2, there are $\alpha_0 \in \mathbf{C}$, and symmetric *i*-additive mappings $\mathcal{A}_i : \mathbf{C}^i \to \mathbf{C}, i \in \{1, 2, 3\}$ such that

$$f(z) = \alpha_0 + \mathcal{A}_1(z) + \mathcal{A}_2^*(z) + \mathcal{A}_3^*(z), \ z \in \mathbf{C}.$$

Taking into account that j is a primitive cube root of unity, we have $1+j+j^2=0$. In addition, the continuity of f show that $\mathcal{A}_1, \mathcal{A}_2$ et \mathcal{A}_3 can be written as the following

$$\mathcal{A}_1(z) = \alpha_1 z + \beta_1 \overline{z}, \ \alpha_1, \alpha_2 \in \mathbf{C},$$

$$\mathcal{A}_{2}^{*}(z) = \alpha_{2}z^{2} + \beta_{2}\overline{z}^{2} + \beta_{3}|z|^{2}, \ \alpha_{2}, \beta_{2}, \beta_{3} \in \mathbf{C},$$

$$\mathcal{A}_3^*(z) = \gamma_1 z^3 + \gamma_2 \overline{z}^3, \ \gamma_1, \gamma_2 \in \mathbf{C}.$$

So the conditions of Theorem 2 do not satisfy where $\gamma_1 = \gamma_2 = \beta_3 = 0$ which finish the proof. \square

References

- [1] M. Ait Sibaha, B. Bouikhalene, E. Elqorachi, *Hyers-Ulam-Rassias stability of the K-quadratic functional equation*, J. Ineq. Pure and appl. Math 8, (2007).
- [2] L. M. Arriola, W. A. Beyer, Stability of the Cauchy functional equation over p-adic fields, Real Analysis Exchange, **31** (1), pp. 125-132, (2005).
- [3] J. Baker, A general functional equation and its stability, Proceedings of the American Mathematical Society, **133**(6), pp. 1657-1664, (2005).
- [4] B. Bouikhalene and E. Elqorachi, *Hyers-Ulam-Rassias stability of the Cauchy linear functional equation*, Tamsui Oxford Journal of Mathematical Sciences **23** (4), pp. 449-459, (2007).
- [5] A. Charifi, B. Bouikhalene, E. Elqorachi, Hyers-Ulam-Rassias stability of a generalized Pexider functional equation, Banach J. Math. Anal, 1 (2), pp. 176-185, (2007).
- [6] A. Charifi, B. Bouikhalene, E. Elqorachi, A. Redouani, Hyers-Ulam-Rassias stability of a generalized Jensen functional equation, Aust. J. Math. Anal. Appl, 6 (1), pp. 1-16, (2009).
- [7] AB. Chahbi, A. Charifi, B. Bouikhalene, S. Kabbaj, Operatorial approach to the non-Archimedean stability of a Pexider K-quadratic functional equation, Arab Journal of Mathematical Sciences, 21 (1), pp. 67-83, (2015).
- [8] D. Ž. Djoković, A representation theorem for $(X_1-1)(X_2-1)...(X_n-1)$ and its applications, In Annales Polonici Mathematici **22** (2), pp. 189-198, (1969).
- [9] H. Drygas, Quasi-inner products and their applications, Springer Netherlands., pp. 13-30, (1987).
- [10] B. R. Ebanks, P. L. Kannappan, P. K. Sahoo, A common generalization of functional equations characterizing normed and quasi-inner-product spaces, Canad. Math. Bull, 35 (3), pp. 321-327, (1992).

- [11] V. A. Faiziev, P. K. Sahoo, On Drygas functional equation on groups, Int. J. Appl. Math. Stat. 7, pp. 59-69, (2007).
- [12] M. Frechet, Une définition fonctionnelles des polynômes, Nouv. Ann. 9, pp. 145-162, (1909).
- [13] A. Giànyi, A characterization of monomial functions, Aequationes Math. **54**, pp. 343-361, (1997).
- [14] D. H. Hyers, Transformations with bounded n-th differences, Pacific J. Math., 11, pp. 591-602, (1961).
- [15] S.-M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg, 70, pp. 175-190, (2000).
- [16] S. -M. Jung, P. K. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc., 38 (3), pp. 645-656, (2001).
- [17] S.-M. Jung, P. K. Sahoo, Stability of a functional equation of Drygas, Aequationes Math., **64** (3), pp. 263-273, (2002).
- [18] R. Łukasik, Some generalization of Cauchy's and the quadratic functional equations, Aequat. Math., 83, pp. 75-86, (2012).
- [19] S. Mazur, W. Orlicz, Grundlegende Eigenschaften der Polynomischen Operationen, Erst Mitteilung, Studia Math., 5, pp. 50-68, (1934).
- [20] A. K. Mirmostafaee, Non-Archimedean stability of quadratic equations, Fixed Point Theory, 11 (1), pp. 67-75, (2010).
- [21] P. K. Sahoo and Pl. Kannappan, *Introduction to Functional Equations*, CRC Press, Boca Raton, Florida, (2011).
- [22] P. Sinopoulos, Functional equations on semigroups, Aequationes Math. **59**, pp.255-261, (2000).
- [23] W. Smajdor, On set-valued solutions of a functional equation of Drygas, Aequ. Math. 77, pp. 89-97, (2009).
- [24] H. Stetkær, Functional equations on abelian groups with involution. II, Aequationes Math. **55**, pp. 227-240, (1998).
- [25] H. Stetkær, Functional equations involving means of functions on the complex plane, Aequationes Math. 55, pp. 47-62, (1998).

- [26] Gy. Szabo, Some functional equations related to quadratic functions, Glasnik Math. 38, pp. 107-118, (1983).
- [27] D. Yang, Remarks on the stability of Drygas equation and the Pexider-quadratic equation, Aequationes Math. 68, pp. 108-116, (2004).

A. Charifi

Department of Mathematics, Faculty of Sciences, Ibn Tofail University, BP: 133, 14000, Kenitra, Morocco

e-mail: charifi2000@yahoo.fr

M. Almahalebi

Department of Mathematics, Faculty of Sciences, Ibn Tofail University, BP: 133, 14000, Kenitra, Morocco e-mail: muaadh1979@hotmail.fr

and

S. Kabbaj

Department of Mathematics, Faculty of Sciences, Ibn Tofail University, BP: 133, 14000, Kenitra, Morocco e-mail: samkabbaj@yahoo.fr