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Abstract

We obtain the solutions of the following Drygas functional equa-
tion

Z)\eé f(w + /\y + CL)\) = Hf(.]?) + ZAE@ f(/\y)7 €,y S Sa

where S is an abelian semigroup, G is an abelian group, f € G5, ®
is a finite automorphism group of S with order k, and ay € S, A € .
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1. Introduction

Characterizing quasi-inner product spaces, Drygas considers in [9] the func-
tional equation f(x)—l—f(y):f(x—y)—i—{ f (L;%) —f (L;z)}

which can be reduced to the following equation (see [21], Remark 9.2, p.
131)

(LY fle+y)+flz-y) =2f@)+f)+f(-y), z,yeR

where R denotes the set of real numbers.
This equation is known in the literature as Drygas equation and is a
generalization of the quadratic functional equation

(1.2) fle+y)+ fle—y) =2f(x) +2f(y), v,y R

The general solution of Drygas equation was given by Ebanks, Kannappan
and Sahoo in [10]. It has the form

f(z) = Alz) + Q(x),

where A : R — R is an additive function and @) : R — R is a quadratic
function, see also [17]. A set-valued version of Drygas equation was consid-
ered by Smajdor in [23]. The Drygas functional equation on an arbitrary
group G takes the form

(1.3) flay) + flay™) =2f(@) + fy) + Fly ).

The solutions of Drygas equation in abelian group are obtained by Stetkaer
in [24]. Various authors studied the Drygas equation, for example Ebanks
et al. [10], Faiziev and Sahoo [11], Jung and Sahoo [17], Lukasik [18], Szabo
[26],Yang [27].

There are several functional equations reduced to those of the Drygas
functional equation (1.1), i.e. the mixed type additive, quadratic, Jensen
and Pexidered equations, we refer, for example, to [1],[2],[4]-[8], [11]-[16],
[19].

The present paper is actually a natural extension and complement to
the work of Bouikhalene et al [4], Lukasik [18], Sinopoulos [22], Stetkeer
[25] and many others [2],[3], [10],[20].

We wish through this work to bring and share answers about two as-
pects: the characterization for solutions of the following Drygas equation

(1.4) Y flatdyt+an) =wfle)+ Y fOw), 2,y €S,

Acd Aed
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where f: S — G is a mapping, S is an abelian semigroup, G is an abelian
group, @ is a finite automorphism group of S, ay € S, A € ®, then to give
illustrative examples of such situations.

This equation is an extension form of several equations, for examples,
fla+y)+ fl@—y)=2f(2)+ fly) + f(-y), z,y €5,
flety+a)+ fle+y+b)=2f(x) +2f(y), =,y €5,

flety+a)+ fle—y+b)=2f(z)+ fly) + f(-y), z,y € S,
flx+y+a)+ flx+oy+b) =2f(z)+2f(y), z,y €S,
fle+y)+ fle+o(y) =2f(x) + fy) + flo®)), =,y €5,
flz+y)+ flz+o(y) =2f(z), z,y €5,

m—1 m—1
2imk

ST fare ) = mf(@)+ Y fe*ny), 2,y € S =G =C, meNm>2,
k=0 k=0

m—1 )
and Z f(z+e%y+ai) =mf(z), x,y € S=G=C, me N* m>2,
k=0

for a,b,aq,...,am—1 € C where N* is the set of nonnegative numbers and
where C is the set of all complex numbers.

2. Background results

Let Z designate the set of integers numbers and G° the Z-module consisting
of all maps from an abelian semigroup S into an abelian group G. Let
n € N* and A, € G be a function, then we say that A, is n-additive
provided that

An(xl+y17 7xj+yja "‘7xn+yn) = An(xh vy Ly 7$n)+An(yla e Yis "'7yn)7

for all z1,...,xj,...,%1, Y1,--,Yj>--»Yn € E; we say that A, is symmetric
provided that

-An(xa(l)vxa@): I wa(n)) = An(wla L2y eeey xn)

whenever x1, xa, ...,z, € S and o is a permutation of {1,2,...,n}.
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If k € N* and A, € G5 is symmetric and k-additive, let Af(x) =

Ag(z,...;z) for all x € S. And note that Aj(rz) = r*Af(z) whenever
——

k
z € S and r € N also we note that

k
Ai(x+ h,...,x+h) = ZC,iAk(x, vy @ hy b)), x h €S,
i=0 T
7 —1

The function Aj is called a monomial function of degree k associated to
A

A function p € G¥ is called a generalized polynomial function of degree
n provided there exist Ay € S and monomial functions A (for 1 <k < n)
such that

n
px) = Ao+ ) Aj(),
i=1
for all x € S. We also need to recall the definition of the linear difference
operator Ap, h € S on G° by

Apf(x) = f(x+h)— f(z), h, z € S.

Notice that these difference operators have important properties such as
the linearity property

Ap(af + Bg) = aAu(f) + BALg), fr9 € G, a,B € Z,

and the commutativity property

Apy Dpyo- By = Bhihg.hy = Dhygyhg@yhoge

where o is a permutation of {1,2,...,n}. There are also other properties

such as
n

Rf(@) =) (-1)"7C f(x +ih)

1=0

and if A,, : S™ — @ is a symmetric and m-additive mapping, then we have

. mI Ay (hi, oo hm), ifk=m

We will finish this section with some results which we will need in the
sequel. Before that, we need to know that every abelian group G is said to
be n!-divisible group when it is divisible uniquely by n! where n € N*.



A generalization of Drygas functional equation 163

Theorem 1. [3],[7],[12],[14],[18],[19]
Let G be an abelian group n!-divisible, n € N* and f € G, then the
following assertions are equivalent.

1. AR f(x) =0, z,h€S.
2. Ahl...hnf(x) =0, =, hl, vy by € S.
3. f is a generalized polynomial function of degree at most n — 1.

Lemma 1. [18] Let G be an abelian group n!-divisible, n € N*| x1,xa, ..., 2y, €
G, then the following properties are fulfilled.

1.

(2.1) S (=)mFCEE =0, i€{1,2,..,n—1},n#1

k=1
and "
(2.2) S (=) FChET = nl.
k=1

2.
(2.3) IfY" Kwx;=0,ke{l,...,n}, thenz; =29 =..=m,=0.

3. Main results

Using the difference operator, we adopt the operatorial approach to charac-
terize the solutions of Drygas equation (1.4) which is not a Jensen equation
or a quadratic equation.

In the remainder of this paper, we denote by S an abelian semigroup and by
G an abelian (k+1)!-divisible group. However, a solution f of Drygas equa-
tion (1.4) in the semigroup S can be extended to the monoid S U {0} (i.e.
by adding the zero element to S) by setting the value of f to zero. We will
then, f(0) = 5= 3 yeq f(ar). Without alter the generality of the problem
studied and if necessary, we will assume that S admit a zero element.

Lemma 2. Let ® be a finite automorphism group of S, k = card®, ay € S
(A€ ®), Ay € G and A; € G (1 < i < k) be symmetric and i-additive
mappings such that

(3.1) p(x) :A0+§:Af(1‘), res
i=1
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and

(32) Llz,y) =Y pl@+iy+a)) —rpx)— Y pAy), 2,y €S
AED €D

Then we have the following

(a) 1,(0,0) = > > Ai(an)—rAo
AED i=1
(3.3)
and
(b) Ip(w,y) = N ,
Ip((), O)+Z)\€<I> Z;;O ZZ;O Zggi:max ClJClkijAl(.f, ey Ly ANy eeey A ), )\y7 ceey )\Z/),
k J
(3.4)

for all z,y € S, where max = max{j + 1,k + 1,5 + k}.

Proof. By direct calculation, we show that

1,(0,0) = > p(ax) — 2kp(0).

A€d

Thus, by replacing p by its expression of A;,0 < i < k we obtain (a). For
every x,y € S, we have

Ip(ﬁvy)
= Ao+ ) (Z (.Af(x + Ay + a,\)>> -y <p(:L‘) +p()\y)>
Aed \i=1 v
= C’ij.Ai(w—i—a)\,...,x—i—a/\,)\y,...,)\y) — kAL (z)
— > ATOw) - rA
AP

K 7 'i—j
= Z Z ZC’ZJ];)Cf_j.%li(:n,...,:U,CL)\,...,aA,Ay,...,)\y)

xed \i=1 \ j=0 - Y y
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— Z RA; ()
i=1
— Z A (A\y) — kAo
red
k—1Kk—1 K

= L(0,0)+> > > > cick .,

A€® j=0 k=0 2<i=maz{j+1,k+1,j+k}
Ai(z, ..z an, .. axn, Ay, o AY),
—— (N
k J

from where (b) follows. O

Lemma 3. Let ® be a finite automorphism group of S, k = card®, ay € S
(A€ ®), Ay € G and A; € G (1 < i < k) be symmetric and i-additive
mappings such that

(3.5) p(x) = Ao+ iAf(m), res

and

(3.6) Ip(z,y) = Z p(z+ Ay + ay) — kp(z) — Z p(A\y), x,y € S.
Aed Aed

Then the following are equivalent.

1
(37) Ip(l’,y) = 07 T,y € S.

2. p is a solution of Eq. (1.4).

3. Ag € G and the mappings A;, 1 < i < k, satisfy the following two
equalities,

(3.8) > iAj(aA) = rAg

Aed =1
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b)
Z C’chzk_] Z Ai('xal‘a vy Ty Qxy weny ANy AYy AY, 7>‘y) =0, z,y €5,
i=mazx A€d T ﬁ]'_/
(3.9)
0<k<k-1,0<j<k—-1,2<i=max =max{k+1,j+
Lj+k} <k

Proof.  Note first that by Lemma 2 the condition (2) is satisfied if and
only if the condition (1) is satisfied. Suppose that (1) is satisfied, then by
Lemma 2 we obtain (3)(a) and we have:

k—1k—1 K

XYYy ad,

AED j=0 k=0 2<i=maz(j+1,k+1,j+k)
(3.10) Ai(xy oy @y ay, ey Gy AY, ooy AY) = 0,
N—— N——
k J
forall z,y € S. To prove (3) we define, forevery 0 < j < k-1, 0 < k < k-1
the mappings g;, h(x ;) : S X S :— G by

k=1 K
= Z Z Z C’gC’f_j.Ai(x, ey Ty )y eey ANy AYy ooy AY), T, Y €S,
N—— N——r

NED k=0 i=j+k Y )

x C’JC’]“ s ooy Ly AXy ooy ANy AY, o0y AY), T,y €S,
) (T y) =Y Z A woes @A AY, ooy AY), T,y

AED 1<i=j+k E j

Note that,

K—1 Kk—1
j=0 k=0

and
go(w,y) = hj)(7,y) = huo)(z,y) =0, for all 7,y € S. However, as

gi(z,ny) :njgj(ac,y), neN* z,ye S, 0<j<k—1,

we have

k—1 rk—1
S nwlgi(z,y) = gj(z,ny) =0, ne N*, z,y € S.
a o



A generalization of Drygas functional equation 167

By Lemma 1, we get
gi(z,y) =0, 2,y€S, 0<j<K—1.
We deduced from the definition of h ;) that
b,y (nz,y) = nkh(k’j)(x,y), neN* z,ye S, 0<k<k—yj 0<j<kK-1,

and we have

k—1 K—1
Z nkh(k,])(xvy) = Z h(k,])(nxuy) = g](nﬁvy) =0,n¢e N*v T,y € S?
=0 k=0

0<3<Kk—1.

By the same manner as above we obtain
h(k,j)(it,y) =0,5€{0,....s =1}, k€ {0,....k — 1}.

Thus, Lemma 1 gives the expected result, (3)(b). The converse of this
implication is immediate. This completes the proof. O

Lemma 4. Let ® be a finite automorphism group of S, kK = card®, a) € S
(A€ ®), and f € G° such that

(3.11) Y fl+ y+ay) =6f(@)+ > f(Ay), z,y€S.
AP Aed

Then, for every x,y € S, Ay f(x) is independent of  and we have

(3.12) At f(z) =0, z,y€ S

Proof.  The proof used here goes along the same lines as the one in [18].
We will denote by ®;; C @, i € {0,...,x}, j € {1,...,CL} the C% pairwise
different sets such that card®;; = k — ¢ and by g € G, the application
defined by

9(y) = - “Zf S My, yes
z:O j=1 AEG;, j
Let A € ®, i €{0,...,x} and j € {1,...,CL}, then the set A®;; C ® has
k — i elements. So, there is k € {1,...,C.} satisfies the following two
equalities
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AD;; = ®; ; and A_lq)i,k = ;.
It follows,
ci Cr
(3.13) D\ 2 | =2 | 2 my), wES
J=1 HEPD; 7=l HEPij

For given x,y, we set

U = T+ 1y, vij = Z wy, i€{0,....,x}, j€{1, ,C’fi}
e, ;

Otherwise, let A € ®, i € {0,...,x} and j € {1,...,C.}, then we have
the following two cases:

Case 1. Let A1 e (I)i,j, then ¢ 75 Kk and, (I)i’j = q%'+17j U {)\71}.
It follows that

uit+ v = rHiy+ Y Auy
HED; 5

= s+ @@+ 1y+ Z Ay
HED; 11k
= Ui+1 + AVit1 ks

for a suitable k in {1,..., C%F1}.

Case 2. Let At € @, ;, then i # 0 and, ®;_1; = ®;; U {\"1}. We can

write,

ui vy, = x+iy+ Z ALy
HED; 5
= o+ (i—-1y+ Z Ay
HED; 1k

= Ui—1 + A\Vi_1,

for a suitable k in {1,...,Ci*!}. Taking into account (3.13) and the calcu-
lation results of the previous two cases, we have:
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kAYf(z) — kg(y)

K— 1 C,i
= IQZ D f(z +iy) 4+ K “iZf(Z ,uy)
= 0 j= ned; ;
k—1
= HZ DFCE f(z + iy+) + Z ”ZZZ]‘(Z )\/Ly)
i=0 J=1e® neED; ;
K ‘ ct
= Y (Iif(ui) +3 f(/\vij))
i=0 j=1 A€d
5 e
= Z(_l)nil Z Z f(ui + Avij + ay)
=0 J=1Xed
= 0, z,y€eSs.

This shows that for every z,y € S, A} f(x) is independent of  and
Ajflz+y) —Ayf(z) =0, z,y €S,
and more accurately
Ag+lf($) =0, z,y €5,

from which the desired result follows. O

Remark 1. Under the assumptions of Lemma 4, if in addition we assume
that

> fQwy) =0, y€s,
AED

then
Ayf(z) =0, z,y€S.

Theorem 2. Let f € G°, ® a finite automorphism group of S, k = card®
and ay € S (A € ®). Then the function f: S — G is a solution of equation

(3.14) Y fle+ A y+ay) =rfl@)+ > fF), 2,y €5,
AeD D

if and only if f has the following form

(3.15) flx)=Ao+ iAf(:p), z €S,

=1
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where Ag € G and Ay : S¥ — G, k € {1,2,...,x} are symmetric and
k-additive functions satisfying the two conditions:

1) S e C‘Z?Cf,j Yoaed Ai(T, T,z an, o, ax, AY, AY, ., AY) =0, x,y €
N ——’ ——— —

k J
S,
0<k<k—-1,0<j<k—1,2<maz=max{j+1,k+1,k+j} <
7 < k and

ii) Z,\ecb Z?:l Af(a,\) = rAp.

Proof. The necessary condition is obtained by Lemma 4, Theorem 1 and
Lemma 3. By Lemma 3 we get the sufficient condition which completes the
proof of Theorem. O

Remark 2. Under the assumptions of Theorem 2, if in addition we assume
that

> fQwy) =0, y€s,

Acd
then the result ( with some modifications on the control of indices i, j and

k ) can be obtained by requiring the assumption "G is k!-divisible” instead
of "G is (k + 1)!-divisible”.

4. Consequences

The following corollaries are immediate consequences of Theorem 2. On this
occasion, we obtain the following three corollaries 1, 2 and 3 which have
been proved by Sinopoulos [22], Stetkeer [25], Lukasik [18], Bouikhalene
and Elqorachi [4] respectively.

Corollary 1. [22][25] Let o : S — S be an involution of S and G be an
abelian group divisible by 2. Then the function f : S — G is a solution of
equation

(1) f@+y) +f(w+oly) =2f@) + fy) + f(oW), z.yeS
if and only if f has the following form
(4.2) f(z) = Ai(@) + A3(@), 7 € S,

where A; : S — G is an arbitrary additive function and As : S x S — G is
an arbitrary symmetric biadditive function with As(x,y) + Az (w, 0(y)> =
0, z,y € S.



A generalization of Drygas functional equation 171

Corollary 2. [18] Let S be an abelian semigroup, G be an abelian group
divisible by k!, ® be a finite automorphism group of S with order k. Then
the function f : S — G is a solution of equation

(4.3) S flr+dy) =rf@)+ . f(A\y), 2,y €S,
Aed Aed

if and only if f has the following form
K
(4.4 f@) =3 Ai@). v e S,

where Ay, : S¥ — G, k € {1,2,....x} are arbiyrary symmetric and k-
additive functions which satisfy the following condition:
Yoaea Ai(z,z, .z, Ay, Ay, ., y) =0, z,ye S, 1<j<i—1,2<
N ——
) J
1 < K.

Proof. In this case, with the notations of Theorem 2, as {ay, A € ¢} =

{0}, k+j =1
Furthermore, we can write that
0 = Z C'ikC’;_j Z Aik(z, .y ax, oy @x, jAY, ooy AY)
i—max(k—l—j k+1) AED v

— Z C’“ZAk VT JAY, <oy AY)

1= k—l—j AED

= ZCf Z Ai(x,y oz, Ay, .y AY), 2,y €85, 2 <i<k.
N —

Jj=1 Aed
For 1 <j<i—1, 2 <1<k, we define the mappings q;; : S x S — G by
0,0 (2, Y) Cj Z Ai(z, .z, jA\y, Ny, ..., \y) z,y € S.
N’

A€

So, we have
Q(j,z)<x7ny) - TLJQ(]J)(QT,:U), T,y € Sa ne N*7 0<j<i—1,2<i<k
and
K . K
> gz y) =Y qua(eny) =0, 3,y €8, 2<i < k.
i=1 j=1

According to Lemmal we get the sought result. O
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Corollary 3. [4] Let S be an abelian group, G be a Banach space and
a € S. Then, the general solution f : S — G of the functional equation

(45) f<$+y+a):f<$)+f(y)7 z,y €5,

(4.6) f(z) = Ai(a) + A1(z),z € S.

where A; : S — G is an arbitrary additive function.

In the following corollaries we prove new others special cases of the
equation 1.4 that is, according to our knowledge, not in the literature.

Corollary 4. Let S be an abelian semigroup, G be an abelian group di-
visible by 2 and a,b € S. Then, the general solution f : S — G of the
functional equation

4.7) fe+y+a)+ flz—y+b)=2f(x) + f(y) + f(~y), =,y €S,
(4.8) Fz) = %(Al(a +0)) + Ai() + A3(a),x €

where Ay : S — G is an arbitrary additive function and Ay : S X S — G
is an arbitrary symmetric biadditive function with As(x,a) = Aa(z,b) =
0, zeS.

Corollary 5. Let S be an abelian semigroup, o be an involution of S, G
be an abelian group divisible by 2 and a,b € S. Then, the general solution
f 8 — G of the functional equation

gLz +y+a)+ f(z+0@) +b) =2f(@) + fy) + f (o)), zy €S,
(4.10) @) = %(Al(a £8)) + Aie) + A3(e),x € S,

where A; : S — G is an arbitrary additive function and As : S x S — G is
an arbitrary symmetric biadditive function with

Ao(z,a) = A2(x,b) =0, z € S and Az(x,y) + Ao (:U,a(y)) =0, z,y € S.
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Proof. Keeping in mind the notation of Theorem 2, we apply it where
k = 2. Then there are an element Ay € G and symmetric i-additives
mappings A; € G5, i € {1,2} satisfy

1. f(x)=Ao+ Ai(z) + A5(x), z € S
on the other side, they satisfy the following conditions of Theorem 2

2. l) k= 07.7 = 17 A2(a>y) + Ag(b,O’(y)) = 07 Yy e Sa
11) kzla.j:Oa A2(y7a)+A2(yvb) :07 yES,
iii) k=1,j=1, A2(xvy) + Ag(x,a(y)) =0, z,y €S

Thus, AQ(y7a) = A?(yab) = 07 y e Sa A2<xay) + AQ((IZ,O’(y)) - 07 T,y € S
and 249 = Ai(a+0b). O

Corollary 6. Let j be a primitive cube root of unity and a be complex
number. Then, the general continuous solution f : C — C of the functional
equation

(f (rc+)y+ja)+f(:c+jy+j2a)+f(:v+j2y+a> = 3f(2)+f(W)+fUy)+f(%y), =,y € C,
4.11
is of the form

(4.12) f(2) = anz + 1T + aga® + 277,

where a1, 81, a9, B2 € C.

Proof. According the Theorem 2, there are oy € C, and symmetric
i-additive mappings A; : C' — C, i € {1,2,3} such that

f(z) = a0+ Ai1(z) + A5(2) + A3(z), z € C.

Taking into account that j is a primitive cube root of unity, we have
1+ 4§+ 42 = 0. In addition, the continuity of f show that Aj, Ay et A3z can
be written as the following

Ai1(2) = anz + 1z, aj, a2 € C,

A5(2) = aa2® + 272 + fBslz]?, a2, 2,85 € C,

A3(2) = m2° +727°, 71,72 € C.

So the conditions of Theorem 2 do not satisfy where v1 = v =83 =0
which finish the proof. O
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