A generalization of Drygas functional equation

A. Charifi
M. Almahalebi
and
S. Kabbaj
Ibn Tofail University, Morocco
Received : April 2015. Accepted : April 2016

Abstract
We obtain the solutions of the following Drygas functional equation
\[\sum_{\lambda \in \Phi} f(x + \lambda y + a_{\lambda}) = \kappa f(x) + \sum_{\lambda \in \Phi} f(\lambda y), \quad x, y \in S, \]
where \(S \) is an abelian semigroup, \(G \) is an abelian group, \(f \in G^S \), \(\Phi \)
is a finite automorphism group of \(S \) with order \(\kappa \), and \(a_{\lambda} \in S, \lambda \in \Phi \).

Subjclass 2010 Mathematics Subject Classification (MSC) :
20B25; 39B52; 47B39; 65Q20.

Keywords and Phrases : Automorphism group; difference operator; Drygas functional equation.
1. Introduction

Characterizing quasi-inner product spaces, Drygas considers in [9] the functional equation
\[f(x) + f(y) = f(x - y) + \frac{x^2 + y^2}{2} - f(\frac{x - y}{2}) \]
which can be reduced to the following equation (see [21], Remark 9.2, p. 131)
\[f(x + y) + f(x - y) = 2f(x) + f(y) + f(-y), \quad x, y \in \mathbb{R} \]
(1.1)
where \(\mathbb{R} \) denotes the set of real numbers.

This equation is known in the literature as Drygas equation and is a generalization of the quadratic functional equation
\[f(x + y) + f(x - y) = 2f(x) + 2f(y), \quad x, y \in \mathbb{R}. \]
(1.2)
The general solution of Drygas equation was given by Ebanks, Kannappan and Sahoo in [10]. It has the form
\[f(x) = A(x) + Q(x), \]
where \(A : \mathbb{R} \rightarrow \mathbb{R} \) is an additive function and \(Q : \mathbb{R} \rightarrow \mathbb{R} \) is a quadratic function, see also [17]. A set-valued version of Drygas equation was considered by Smajdor in [23]. The Drygas functional equation on an arbitrary group \(G \) takes the form
\[f(xy) + f(xy^{-1}) = 2f(x) + f(y) + f(y^{-1}). \]
(1.3)
The solutions of Drygas equation in abelian group are obtained by Stetkær in [24]. Various authors studied the Drygas equation, for example Ebanks et al. [10], Fažiev and Sahoo [11], Jung and Sahoo [17], Łukasik [18], Szabo [26], Yang [27].

There are several functional equations reduced to those of the Drygas functional equation (1.1), i.e. the mixed type additive, quadratic, Jensen and Pexidered equations, we refer, for example, to [1], [2], [4]-[8], [11]-[16], [19].

The present paper is actually a natural extension and complement to the work of Bouikhalene et al [4], Łukasik [18], Sinopoulos [22], Stetkær [25] and many others [2], [3], [10], [20].

We wish through this work to bring and share answers about two aspects: the characterization for solutions of the following Drygas equation
\[\sum_{\lambda \in \Phi} f(x + \lambda y + a\lambda) = \kappa f(x) + \sum_{\lambda \in \Phi} f(\lambda y), \quad x, y \in S, \]
(1.4)
where $f : S \to G$ is a mapping, S is an abelian semigroup, G is an abelian group, Φ is a finite automorphism group of S, $a_\lambda \in S$, $\lambda \in \Phi$, then to give illustrative examples of such situations.

This equation is an extension form of several equations, for examples,

$$f(x + y) + f(x - y) = 2f(x) + f(y) + f(-y), \quad x, y \in S;$$
$$f(x + y + a) + f(x + y + b) = 2f(x) + 2f(y), \quad x, y \in S;$$
$$f(x + y + a) + f(x - y + b) = 2f(x) + f(y) + f(-y), \quad x, y \in S;$$
$$f(x + y + a) + f(x + \sigma y + b) = 2f(x) + 2f(y), \quad x, y \in S;$$
$$f(x + y) + f(x + \sigma(y)) = 2f(x) + f(y) + f(\sigma(y)), \quad x, y \in S;$$
$$f(x + y) + f(x + \sigma(y)) = 2f(x), \quad x, y \in S;$$

$$\sum_{k=0}^{m-1} f(x + e^{2\pi i k/m} y) = m f(x) + \sum_{k=0}^{m-1} f(e^{2\pi i k/m} y), \quad x, y \in S = G = \mathbb{C}, \quad m \in \mathbb{N}^*, m \geq 2,$$

and

$$\sum_{k=0}^{m-1} f(x + e^{2\pi i k/m} y + a_i) = m f(x), \quad x, y \in S = G = \mathbb{C}, \quad m \in \mathbb{N}^*, m \geq 2,$$

for $a, b, a_1, \ldots, a_{m-1} \in \mathbb{C}$ where \mathbb{N}^* is the set of nonnegative numbers and where \mathbb{C} is the set of all complex numbers.

2. Background results

Let \mathbb{Z} designate the set of integers numbers and G^S the \mathbb{Z}-module consisting of all maps from an abelian semigroup S into an abelian group G. Let $n \in \mathbb{N}^*$ and $A_n \in G^{S^n}$ be a function, then we say that A_n is n-additive provided that

$$A_n(x_1 + y_1, \ldots, x_j + y_j, \ldots, x_n + y_n) = A_n(x_1, \ldots, x_j, \ldots, x_n) + A_n(y_1, \ldots, y_j, \ldots, y_n),$$

for all $x_1, \ldots, x_j, \ldots, x_n, y_1, \ldots, y_j, \ldots, y_n \in E$; we say that A_n is symmetric provided that

$$A_n(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}) = A_n(x_1, x_2, \ldots, x_n)$$

whenever $x_1, x_2, \ldots, x_n \in S$ and σ is a permutation of $\{1, 2, \ldots, n\}$.
If \(k \in \mathbb{N}^* \) and \(A_k \in G^{S^k} \) is symmetric and \(k \)-additive, let \(A^*_k(x) = A_k(x, ..., x) \) for all \(x \in S \). And note that \(A_k^*(rx) = r^k A_k^*(x) \) whenever \(x \in S \) and \(r \in \mathbb{N} \) also we note that

\[
A_k(x + h, ..., x + h) = \sum_{i=0}^{k} C_i^k A_k^{i}(x, ..., x, h, ..., h), \quad x, h \in S.
\]

The function \(A_k^* \) is called a \textit{monomial} function of degree \(k \) associated to \(A_k \).

A function \(p \in G^S \) is called a \textit{generalized polynomial function} of degree \(n \) provided there exist \(A_0 \in S \) and monomial functions \(A_k^* \) (for \(1 \leq k \leq n \)) such that

\[
p(x) = A_0 + \sum_{i=1}^{n} A_k^*(x),
\]

for all \(x \in S \). We also need to recall the definition of the \textit{linear difference operator} \(\Delta_h, h \in S \) on \(G^S \) by

\[
\Delta_h f(x) = f(x + h) - f(x), \quad h, x \in S.
\]

Notice that these difference operators have important properties such as the linearity property

\[
\Delta_h(\alpha f + \beta g) = \alpha \Delta_h f + \beta \Delta_h g, \quad f, g \in G^S, \quad \alpha, \beta \in \mathbb{Z},
\]

and the commutativity property

\[
\Delta_h f \Delta_{h_1} \cdots \Delta_{h_s} = \Delta_{h_1 h_2 \cdots h_s} = \Delta_{h_{\sigma(1)} h_{\sigma(2)} \cdots h_{\sigma(s)}},
\]

where \(\sigma \) is a permutation of \(\{1, 2, ..., n\} \). There are also other properties such as

\[
\Delta_h^n f(x) = \sum_{i=0}^{n} (-1)^{n-i} C_i^n f(x + ih)
\]

and if \(A_m : S^m \to G \) is a symmetric and \(m \)-additive mapping, then we have

\[
\Delta_{h_1 \cdots h_k} A_m^*(x) = \begin{cases}
m! A_m(h_1, ..., h_m), & \text{if } k = m \\
0, & \text{if } k > m \end{cases}
\]

We will finish this section with some results which we will need in the sequel. Before that, we need to know that every abelian group \(G \) is said to be \textit{n!-divisible group} when it is divisible uniquely by \(n! \) where \(n \in \mathbb{N}^* \).
Theorem 1. [3],[7],[12],[14],[18],[19]

Let G be an abelian group $n!$-divisible, $n \in \mathbb{N}^*$ and $f \in G^S$, then the following assertions are equivalent.

1. $\Delta^nf(x) = 0$, $x, h \in S$.
2. $\Delta_{h_1...h_n}f(x) = 0$, $x, h_1, ..., h_n \in S$.
3. f is a generalized polynomial function of degree at most $n - 1$.

Lemma 1. [18] Let G be an abelian group $n!$-divisible, $n \in \mathbb{N}^*$, $x_1, x_2, ..., x_n \in G$, then the following properties are fulfilled.

1.
 \begin{align*}
 \sum_{k=1}^{n} (-1)^{n-k} \binom{n}{k} k^i = 0, & i \in \{1, 2, ..., n-1\}, n \neq 1 \\
 \text{and} \quad \sum_{k=1}^{n} (-1)^{n-k} \binom{n}{k} k^n = n!.
 \end{align*}

2.
 \begin{align*}
 \text{If} \sum_{i=1}^{n} k^i x_i = 0, & k \in \{1, ..., n\}, \text{ then } x_1 = x_2 = ... = x_n = 0.
 \end{align*}

3. Main results

Using the difference operator, we adopt the operatorial approach to characterize the solutions of Drygas equation (1.4) which is not a Jensen equation or a quadratic equation.

In the remainder of this paper, we denote by S an abelian semigroup and by G an abelian $(\kappa+1)!$-divisible group. However, a solution f of Drygas equation (1.4) in the semigroup S can be extended to the monoid $S \cup \{0\}$ (i.e. by adding the zero element to S) by setting the value of f to zero. We will then, $f(0) = \frac{1}{2\pi} \sum_{\lambda \in \Phi} f(a_\lambda)$. Without alter the generality of the problem studied and if necessary, we will assume that S admit a zero element.

Lemma 2. Let Φ be a finite automorphism group of S, $\kappa = \text{card} \Phi$, $a_\lambda \in S$ ($\lambda \in \Phi$), $A_0 \in G$ and $A_i \in G^{S^i}$ ($1 \leq i \leq \kappa$) be symmetric and i-additive mappings such that

\begin{equation}
 p(x) = A_0 + \sum_{i=1}^{\kappa} A_i^i(x), \quad x \in S
\end{equation}
and

\[I_p(x, y) = \sum_{\lambda \in \Phi} p(x + \lambda y + a_\lambda) - \kappa p(x) - \sum_{\lambda \in \Phi} p(\lambda y), \ x, y \in S. \] (3.2)

Then we have the following

(a) \[I_p(0, 0) = \sum_{\lambda \in \Phi} \sum_{i=1}^{\kappa} \mathcal{A}_i(a_\lambda) - \kappa \mathcal{A}_0 \] (3.3)

and

(b) \[I_p(x, y) = I_p(0, 0) + \sum_{\lambda \in \Phi} \sum_{j=0}^{\kappa-1} \sum_{k=0}^{\kappa-1} \sum_{2 \leq i = \max}^{\kappa} C_i^j C_{i-j}^k \mathcal{A}_i(x, x, a_\lambda, \ldots, a_\lambda, \lambda y, \ldots, \lambda y). \] (3.4)

for all \(x, y \in S \), where \(\max = \max\{j + 1, k + 1, j + k\} \).

Proof. By direct calculation, we show that

\[I_p(0, 0) = \sum_{\lambda \in \Phi} p(a_\lambda) - 2\kappa p(0). \]

Thus, by replacing \(p \) by its expression of \(\mathcal{A}_i, 0 \leq i \leq \kappa \) we obtain (a). For every \(x, y \in S \), we have

\[
I_p(x, y) = \kappa \mathcal{A}_0 + \sum_{\lambda \in \Phi} \left(\sum_{i=1}^{\kappa} \mathcal{A}_i^* (x + \lambda y + a_\lambda) \right) - \sum_{\lambda \in \Phi} \left(p(x) + p(\lambda y) \right) \\
= \sum_{\lambda \in \Phi} \left(\sum_{i=1}^{\kappa} \left(\sum_{j=0}^{i} C_i^j \mathcal{A}_i(x + a_\lambda, \ldots, x + a_\lambda, \lambda y, \ldots, \lambda y) \right) \right) - \sum_{i=1}^{\kappa} \kappa \mathcal{A}_i^* (x) \\
- \sum_{\lambda \in \Phi} \mathcal{A}_i^* (\lambda y) - \kappa \mathcal{A}_0 \\
= \sum_{\lambda \in \Phi} \left(\sum_{i=1}^{\kappa} \left(\sum_{j=0}^{i} C_i^j \sum_{k=0}^{i-j} C_{i-j}^k \mathcal{A}_i(x, a_\lambda, \ldots, a_\lambda, \lambda y, \ldots, \lambda y) \right) \right) \\
\]
A generalization of Drygas functional equation

\[
- \sum_{i=1}^{\kappa} \kappa A_i^*(x) \\
- \sum_{\lambda \in \Phi} A_i^*(\lambda y) - \kappa A_0
\]

= \[I_p(0, 0) + \sum_{\lambda \in \Phi} \sum_{j=0}^{\kappa-1} \sum_{k=0}^{\kappa-1} \sum_{0 \leq i = \max\{j+1,k+1,j+k\}}^{\kappa} C_i^j C_k^{i-j}
A_i(x, \ldots, x, a_{\lambda}, \ldots, a_{\lambda}, \lambda y, \ldots, \lambda y),
\]

from where (b) follows. \(\square\)

Lemma 3. Let \(\Phi\) be a finite automorphism group of \(S\), \(\kappa = \text{card} \Phi\), \(a_{\lambda} \in S\) \((\lambda \in \Phi)\), \(A_0 \in G\) and \(A_i \in G^{S^i}\) \((1 \leq i \leq \kappa)\) be symmetric and \(i\)-additive mappings such that

\[
p(x) = A_0 + \sum_{i=1}^{\kappa} A_i^*(x), \quad x \in S
\]

and

\[
I_p(x, y) = \sum_{\lambda \in \Phi} p(x + \lambda y + a_{\lambda}) - \kappa p(x) - \sum_{\lambda \in \Phi} p(\lambda y), \quad x, y \in S.
\]

Then the following are equivalent.

1. \(I_p(x, y) = 0, \quad x, y \in S\). \(\quad (3.7)\)

2. \(p\) is a solution of Eq. (1.4).

3. \(A_0 \in G\) and the mappings \(A_i, \quad 1 \leq i \leq \kappa\), satisfy the following two equalities,

a)

\[
\sum_{\lambda \in \Phi} \sum_{i=1}^{\kappa} A_i^*(a_{\lambda}) = \kappa A_0
\]

and
\[\sum_{i=\text{max}}^{\kappa} C_i^j C_{i-j}^k \sum_{\lambda \in \Phi} A_i(x, x, ..., a, \lambda, a, \lambda, \lambda, ..., \lambda) = 0, \quad x, y \in S, \quad (3.9) \]

\[0 \leq k \leq \kappa - 1, \quad 0 \leq j \leq \kappa - 1, \quad 2 \leq i = \text{max} = \text{max}\{k+1, j+1, k+j+1\} \leq \kappa. \]

Proof. Note first that by Lemma 2 the condition (2) is satisfied if and only if the condition (1) is satisfied. Suppose that (1) is satisfied, then by Lemma 2 we obtain (3)(a) and we have:

\[I_p(x, y) = \sum_{\lambda \in \Phi} \sum_{j=0}^{\kappa-1} \sum_{k=0}^{\kappa-1} C_i^j C_{i-j}^k A_i(x, x, ..., a, \lambda, a, \lambda, \lambda, ..., \lambda), \quad x, y \in S, \quad (3.10) \]

for all \(x, y \in S \). To prove (3) we define, for every \(0 \leq j \leq \kappa - 1, \quad 0 \leq k \leq \kappa - 1 \) the mappings \(g_j, h_{(k,j)} : S \times S :\rightarrow G \) by

\[g_j(x, y) = \sum_{\lambda \in \Phi} \sum_{k=0}^{\kappa-1} C_i^j C_{i-j}^k A_i(x, x, ..., a, \lambda, a, \lambda, \lambda, ..., \lambda), \quad x, y \in S, \]

\[h_{(k,j)}(x, y) = \sum_{\lambda \in \Phi} \sum_{j=0}^{\kappa-1} C_i^j C_{i-j}^k A_i(x, x, ..., a, \lambda, a, \lambda, \lambda, ..., \lambda), \quad x, y \in S. \]

Note that,

\[I_p(x, y) = \sum_{j=0}^{\kappa-1} g_j(x, y), \quad \sum_{k=0}^{\kappa-1} h_{(k,j)}(x, y) = g_j(x, y) \]

and

\[g_0(x, y) = h_{(0,j)}(x, y) = h_{(k,0)}(x, y) = 0, \quad \text{for all } x, y \in S. \]

However, as

\[g_j(x, ny) = n^j g_j(x, y), \quad n \in \mathbb{N}^+, \quad x, y \in S, \quad 0 \leq j \leq \kappa - 1, \]

we have

\[\sum_{j=0}^{\kappa-1} n^j g_j(x, y) = \sum_{j=0}^{\kappa-1} g_j(x, ny) = 0, \quad n \in \mathbb{N}^+, \quad x, y \in S. \]
By Lemma 1, we get
\[g_j(x, y) = 0, \quad x, y \in S, \quad 0 \leq j \leq \kappa - 1. \]

We deduced from the definition of \(h_{(k,j)} \) that
\[h_{(k,j)}(nx, y) = n^k h_{(k,j)}(x, y), \quad n \in \mathbb{N}^*, \quad x, y \in S, \quad 0 \leq k \leq \kappa - j, \quad 0 \leq j \leq \kappa - 1, \]
and we have
\[\sum_{k=0}^{\kappa-1} n^k h_{(k,j)}(x, y) = \sum_{k=0}^{\kappa-1} h_{(k,j)}(nx, y) = g_j(nx, y) = 0, \quad n \in \mathbb{N}^*, \quad x, y \in S, \quad 0 \leq j \leq \kappa - 1. \]

By the same manner as above we obtain
\[h_{(k,j)}(x, y) = 0, \quad j \in \{0, ..., \kappa - 1\}, \quad k \in \{0, ..., \kappa - 1\}. \]

Thus, Lemma 1 gives the expected result, (3)(b). The converse of this implication is immediate. This completes the proof.

Lemma 4. Let \(\Phi \) be a finite automorphism group of \(S \), \(\kappa = \text{card} \Phi \), \(a_\lambda \in S \) \((\lambda \in \Phi)\), and \(f \in G^S \) such that
\[\sum_{\lambda \in \Phi} f(x + \lambda y + a_\lambda) = \kappa f(x) + \sum_{\lambda \in \Phi} f(\lambda y), \quad x, y \in S. \tag{3.11} \]

Then, for every \(x, y \in S \), \(\Delta^\kappa_y f(x) \) is independent of \(x \) and we have
\[\Delta^{\kappa+1}_y f(x) = 0, \quad x, y \in S. \tag{3.12} \]

Proof. The proof used here goes along the same lines as the one in [18]. We will denote by \(\Phi_{i,j} \subset \Phi \), \(i \in \{0, ..., \kappa\} \), \(j \in \{1, ..., C^i_\kappa\} \) the \(C^i_\kappa \) pairwise different sets such that \(\text{card} \Phi_{i,j} = \kappa - i \) and by \(g \in G^S \), the application defined by
\[g(y) = -\sum_{i=0}^{\kappa} (-1)^{\kappa-i} \sum_{j=1}^{C^i_\kappa} f \left(\sum_{\lambda \in \Phi_{i,j}} \lambda y \right), \quad y \in S. \]

Let \(\lambda \in \Phi \), \(i \in \{0, ..., \kappa\} \) and \(j \in \{1, ..., C^i_\kappa\} \), then the set \(\lambda \Phi_{i,j} \subset \Phi \) has \(\kappa - i \) elements. So, there is \(k \in \{1, ..., C^i_\kappa\} \) satisfies the following two equalities.
\[\lambda \Phi_{ij} = \Phi_{i,k} \text{ and } \lambda^{-1} \Phi_{i,k} = \Phi_{i,j}. \]

It follows,

\[\sum_{j=1}^{C_k^i} f \left(\sum_{\mu \in \Phi_{i,j}} \lambda \mu y \right) = \sum_{j=1}^{C_k^i} f \left(\sum_{\mu \in \Phi_{i,j}} \mu y \right), \quad x \in S. \]

For given \(x, y \), we set

\[u_i = x + iy, \quad v_{ij} = \sum_{\mu \in \Phi_{i,j}} \mu y, \quad i \in \{0, \ldots, \kappa\}, \quad j \in \{1, \ldots, C_k^i\}. \]

Otherwise, let \(\lambda \in \Phi, \quad i \in \{0, \ldots, \kappa\} \text{ and } j \in \{1, \ldots, C_k^i\} \), then we have the following two cases:

Case 1. Let \(\lambda^{-1} \in \Phi_{i,j} \), then \(i \neq \kappa \) and, \(\Phi_{i,j} = \Phi_{i+1,j} \cup \{\lambda^{-1}\} \).

It follows that

\[u_i + \lambda v_{ij} = x + iy + \sum_{\mu \in \Phi_{i,j}} \lambda \mu y \]
\[= x + (i + 1)y + \sum_{\mu \in \Phi_{i+1,k}} \lambda \mu y \]
\[= u_{i+1} + \lambda v_{i+1,k}, \]

for a suitable \(k \) in \(\{1, \ldots, C_k^{i+1}\} \).

Case 2. Let \(\lambda^{-1} \in \Phi_{i,j} \), then \(i \neq 0 \) and, \(\Phi_{i-1,j} = \Phi_{i,j} \cup \{\lambda^{-1}\} \). We can write,

\[u_i + \lambda v_{ij} = x + iy + \sum_{\mu \in \Phi_{i,j}} \lambda \mu y \]
\[= x + (i - 1)y + \sum_{\mu \in \Phi_{i-1,k}} \lambda \mu y \]
\[= u_{i-1} + \lambda v_{i-1,k}, \]

for a suitable \(k \) in \(\{1, \ldots, C_k^{i+1}\} \). Taking into account (3.13) and the calculation results of the previous two cases, we have:
\[\kappa \Delta_y^\kappa f(x) - \kappa g(y) \]

\[= \kappa \sum_{i=0}^\kappa (-1)^{\kappa-i} C_i^\kappa f(x + iy) + \kappa \sum_{i=0}^{\kappa-1} \sum_{j=1}^{C_i^\kappa} f \left(\sum_{\mu \in \Phi_{i,j}} \mu y \right) \]

\[= \kappa \sum_{i=0}^\kappa (-1)^{\kappa-i} C_i^\kappa f(x + iy + \lambda y) + \sum_{i=0}^{\kappa-1} \sum_{j=1}^{C_i^\kappa} \sum_{\mu \in \Phi_{i,j}} f \left(\sum_{\lambda \in \Phi} \lambda \mu y \right) \]

\[= \sum_{i=0}^\kappa (-1)^{\kappa-i} \sum_{j=1}^{C_i^\kappa} \left(\kappa f(u_i) + \sum_{\lambda \in \Phi} f(\lambda v_{ij}) \right) \]

\[= \sum_{i=0}^\kappa (-1)^{\kappa-i} \sum_{j=1}^{C_i^\kappa} f(u_i + \lambda v_{ij} + a\lambda) \]

\[= 0, \ x, y \in S. \]

This shows that for every \(x, y \in S \), \(\Delta_y^\kappa f(x) \) is independent of \(x \) and

\[\Delta_y^\kappa f(x + y) - \Delta_y^\kappa f(x) = 0, \ x, y \in S, \]

and more accurately

\[\Delta_y^{\kappa+1} f(x) = 0, \ x, y \in S, \]

from which the desired result follows. □

Remark 1. Under the assumptions of Lemma 4, if in addition we assume that

\[\sum_{\lambda \in \Phi} f(\lambda y) = 0, \ y \in S, \]

then

\[\Delta_y^\kappa f(x) = 0, \ x, y \in S. \]

Theorem 2. Let \(f \in G^S \), \(\Phi \) a finite automorphism group of \(S \), \(\kappa = \text{card} \Phi \) and \(a\lambda \in S \ (\lambda \in \Phi) \). Then the function \(f : S \rightarrow G \) is a solution of equation

\[\sum_{\lambda \in \Phi} f(x + \lambda y + a\lambda) = \kappa f(x) + \sum_{\lambda \in \Phi} f(\lambda y), \ x, y \in S, \]

if and only if \(f \) has the following form

\[f(x) = A_0 + \sum_{i=1}^\kappa A_i^\kappa(x), \ x \in S, \]
where $A_0 \in G$ and $A_k : S^k \to G$, $k \in \{1, 2, ..., \kappa\}$ are symmetric and k-additive functions satisfying the two conditions:

i) $\sum_{i=\max}^\kappa C_i^j C_{i-j}^k \sum_{\lambda \in \Phi} A_i(\underbrace{x, x, ..., x}_{k}, a_\lambda, ..., a_\lambda, \lambda y, \lambda y, ..., \lambda y) = 0$, $x, y \in S$, $0 \leq k \leq \kappa - 1$, $0 \leq j \leq \kappa - 1$, $2 \leq \max = \max\{j + 1, k + 1, k + j\} \leq i \leq \kappa$ and

ii) $\sum_{\lambda \in \Phi} \sum_{i=1}^\kappa A_i^\lambda(a_\lambda) = \kappa A_0$.

Proof. The necessary condition is obtained by Lemma 4, Theorem 1 and Lemma 3. By Lemma 3 we get the sufficient condition which completes the proof of Theorem. \qed

Remark 2. Under the assumptions of Theorem 2, if in addition we assume that

$$\sum_{\lambda \in \Phi} f(\lambda y) = 0, y \in S,$$

then the result (with some modifications on the control of indices i, j and k) can be obtained by requiring the assumption ”G is κ-divisible” instead of ”G is $(\kappa + 1)$-divisible”.

4. Consequences

The following corollaries are immediate consequences of Theorem 2. On this occasion, we obtain the following three corollaries 1, 2 and 3 which have been proved by Sinopoulos [22], Stetkær [25], Lukasik [18], Bouikhalene and Elqorachi [4] respectively.

Corollary 1. [22][25] Let $\sigma : S \to S$ be an involution of S and G be an abelian group divisible by 2. Then the function $f : S \to G$ is a solution of equation

$$(4.1) \quad f(x + y) + f(x + \sigma(y)) = 2f(x) + f(y) + f(\sigma(y)), \quad x, y \in S$$

if and only if f has the following form

$$(4.2) \quad f(x) = A_1(x) + A_2^\sigma(x), \quad x \in S,$$

where $A_1 : S \to G$ is an arbitrary additive function and $A_2 : S \times S \to G$ is an arbitrary symmetric biadditive function with $A_2(x, y) + A_2(x, \sigma(y)) = 0, x, y \in S$.

Corollary 2. [18] Let S be an abelian semigroup, G be an abelian group divisible by $\kappa!$, Φ be a finite automorphism group of S with order κ. Then the function $f : S \to G$ is a solution of equation

\[\sum_{\lambda \in \Phi} f(x + \lambda y) = \kappa f(x) + \sum_{\lambda \in \Phi} f(\lambda y), \quad x, y \in S, \]

if and only if f has the following form

\[f(x) = \sum_{i=1}^{\kappa} A_i^i(x), \quad x \in S, \]

where $A_k : S^k \to G, \; k \in \{1, 2, \ldots, \kappa\}$ are arbitrary symmetric and k-additive functions which satisfy the following condition:

\[\sum_{\lambda \in \Phi} A_i(x, \ldots, x, \underbrace{\lambda y, \lambda y, \ldots, \lambda y}_j) = 0, \quad x, y \in S, \; 1 \leq j \leq i - 1, \; 2 \leq i \leq \kappa. \]

Proof. In this case, with the notations of Theorem 2, as $\{a_\lambda, \; \lambda \in \Phi\} = \{0\}, \; k + j = i$. Furthermore, we can write that

\[0 = \sum_{i=\text{max}(k+j,k+1)}^{\kappa} C_i^k C_{i-j}^j \sum_{\lambda \in \Phi} A_i k(x, \ldots, x, a_\lambda, \ldots, a_\lambda, j \lambda y, \ldots, \lambda y) \]

\[= \sum_{i=k+j}^{\kappa} C_i^k \sum_{\lambda \in \Phi} A_i k(x, \ldots, x, j \lambda y, \ldots, \lambda y) \]

\[= \sum_{j=1}^{i-1} C_i^j \sum_{\lambda \in \Phi} A_i(x, \ldots, x, j \lambda y, \ldots, \lambda y), \quad x, y \in S, \; 2 \leq i \leq \kappa. \]

For $1 \leq j \leq i - 1, \; 2 \leq i \leq \kappa$, we define the mappings $q(j,i) : S \times S \to G$ by

\[q(j,i)(x, y) = C_i^j \sum_{\lambda \in \Phi} A_i(x, \ldots, x, j \lambda y, \ldots, \lambda y) x, y \in S. \]

So, we have

\[q(j,i)(x, ny) = n^j q(j,i)(x, y), \quad x, y \in S, \; n \in \mathbb{N}^*, \; 0 \leq j \leq i - 1, \; 2 \leq i \leq \kappa \]

and

\[\sum_{j=1}^{\kappa} n^j q(j,i)(x, y) = \sum_{j=1}^{\kappa} q(j,i)(x, ny) = 0, \quad x, y \in S, \; 2 \leq i \leq \kappa. \]

According to Lemma 1 we get the sought result. \(\square\)
Corollary 3. [4] Let S be an abelian group, G be a Banach space and $a \in S$. Then, the general solution $f : S \to G$ of the functional equation

$$f(x + y + a) = f(x) + f(y), \ x, y \in S,$$

(4.5) is

$$f(x) = A_1(a) + A_1(x), x \in S.$$

(4.6)

where $A_1 : S \to G$ is an arbitrary additive function.

In the following corollaries we prove new others special cases of the equation 1.4 that is, according to our knowledge, not in the literature.

Corollary 4. Let S be an abelian semigroup, G be an abelian group divisible by 2 and $a, b \in S$. Then, the general solution $f : S \to G$ of the functional equation

$$f(x + y + a) + f(x - y + b) = 2f(x) + f(y) + f(-y), \ x, y \in S,$$

(4.7) is

$$f(x) = \frac{1}{2} \left(A_1(a + b) \right) + A_1(x) + A_2^*(x), x \in S.$$

(4.8)

where $A_1 : S \to G$ is an arbitrary additive function and $A_2 : S \times S \to G$ is an arbitrary symmetric biadditive function with $A_2(x, a) = A_2(x, b) = 0, x \in S$.

Corollary 5. Let S be an abelian semigroup, σ be an involution of S, G be an abelian group divisible by 2 and $a, b \in S$. Then, the general solution $f : S \to G$ of the functional equation

$$f(x + y + a) + f(x + \sigma(y) + b) = 2f(x) + f(y) + f(\sigma(y)), \ x, y \in S,$$

(4.9) is

$$f(x) = \frac{1}{2} \left(A_1(a + b) \right) + A_1(x) + A_2^*(x), x \in S.$$

(4.10)

where $A_1 : S \to G$ is an arbitrary additive function and $A_2 : S \times S \to G$ is an arbitrary symmetric biadditive function with

$A_2(x, a) = A_2(x, b) = 0, x \in S$ and $A_2(x, y) + A_2(x, \sigma(y)) = 0, x, y \in S.$
Proof. Keeping in mind the notation of Theorem 2, we apply it where \(\kappa = 2 \). Then there are an element \(A_0 \in G \) and symmetric \(i \)-additives mappings \(A_i \in G^S, \ i \in \{1, 2\} \) satisfy

1. \(f(x) = A_0 + A_1(x) + A_2^*(x), \ x \in S \)

on the other side, they satisfy the following conditions of Theorem 2:

2. i) \(k = 0, j = 1, A_2(a, y) + A_2(b, \sigma(y)) = 0, \ y \in S \),

 ii) \(k = 1, j = 0, A_2(y, a) + A_2(y, b) = 0, \ y \in S \),

 iii) \(k = 1, j = 1, A_2(x, y) + A_2(x, \sigma(y)) = 0, \ x, y \in S \).

Thus, \(A_2(y, a) = A_2(y, b) = 0, \ y \in S; \ A_2(x, y) + A_2(x, \sigma(y)) = 0, \ x, y \in S \) and \(2A_0 = A_1(a + b) \). \(\square \)

Corollary 6. Let \(j \) be a primitive cube root of unity and \(a \) be complex number. Then, the general continuous solution \(f : C \to C \) of the functional equation

\[
 f(x+y+j\alpha)+f(x+jy+j^2\alpha)+f(x+j^2y+a) = 3f(x)+f(y)+f(jy)+f(j^2y), \ x, y \in C,
\]

is of the form

\[
 f(x) = \alpha_1 x + \beta_1 \bar{x} + \alpha_2 x^2 + \beta_2 \bar{x}^2,
\]

where \(\alpha_1, \beta_1, \alpha_2, \beta_2 \in C \).

Proof. According the Theorem 2, there are \(\alpha_0 \in C \), and symmetric \(i \)-additive mappings \(A_i : C^i \to C, \ i \in \{1, 2, 3\} \) such that

\[
 f(z) = \alpha_0 + A_1(z) + A_2^*(z) + A_3^*(z), \ z \in C.
\]

Taking into account that \(j \) is a primitive cube root of unity, we have \(1 + j + j^2 = 0 \). In addition, the continuity of \(f \) show that \(A_1, A_2 \) et \(A_3 \) can be written as the following

\[
 A_1(z) = \alpha_1 z + \beta_1 \bar{z}, \ \alpha_1, \alpha_2 \in C,
\]

\[
 A_2^*(z) = \alpha_2 z^2 + \beta_2 z^2 + \beta_3 |z|^2, \ \alpha_2, \beta_2, \beta_3 \in C,
\]

\[
 A_3^*(z) = \gamma_1 z^3 + \gamma_2 \bar{z}^3, \ \gamma_1, \gamma_2 \in C.
\]

So the conditions of Theorem 2 do not satisfy where \(\gamma_1 = \gamma_2 = \beta_3 = 0 \) which finish the proof. \(\square \)
References

A. Charifi
Department of Mathematics,
Faculty of Sciences,
Ibn Tofail University,
BP: 133, 14000,
Kenitra,
Morocco
e-mail : charifi2000@yahoo.fr

M. Almahalebi
Department of Mathematics,
Faculty of Sciences,
Ibn Tofail University,
BP: 133, 14000,
Kenitra,
Morocco
e-mail : muaadh1979@hotmail.fr

and

S. Kabbaj
Department of Mathematics,
Faculty of Sciences,
Ibn Tofail University,
BP: 133, 14000,
Kenitra,
Morocco
e-mail : samkabbaj@yahoo.fr