Proyecciones Journal of Mathematics
Vol. 35, N ${ }^{o}$ 2, pp. 159-176, June 2016.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172016000200002

A generalization of Drygas functional equation

A. Charifi
M. Almahalebi
and
S. Kabbaj
Ibn Tofail University, Morocco
Received : April 2015. Accepted : April 2016

Abstract

We obtain the solutions of the following Drygas functional equation $\sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)=\kappa f(x)+\sum_{\lambda \in \Phi} f(\lambda y), x, y \in S$, where S is an abelian semigroup, G is an abelian group, $f \in G^{S}, \Phi$ is a finite automorphism group of S with order κ, and $a_{\lambda} \in S, \lambda \in \Phi$.

Subjclass 2010 Mathematics Subject Classification (MSC) : 20B25; 39B52; 47B39; 65Q20.

Keywords and Phrases : Automorphism group; difference operator; Drygas functional equation.

1. Introduction

Characterizing quasi-inner product spaces, Drygas considers in [9] the functional equation $\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})=\mathrm{f}(\mathrm{x}-\mathrm{y})+\left\{f\left(\frac{x+y}{2}\right)-f\left(\frac{x-y}{2}\right)\right\}$
which can be reduced to the following equation (see [21], Remark 9.2, p. 131)

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+f(y)+f(-y), \quad x, y \in \mathbf{R} \tag{1.1}
\end{equation*}
$$

where \mathbf{R} denotes the set of real numbers.
This equation is known in the literature as Drygas equation and is a generalization of the quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y), \quad x, y \in \mathbf{R} . \tag{1.2}
\end{equation*}
$$

The general solution of Drygas equation was given by Ebanks, Kannappan and Sahoo in [10]. It has the form

$$
f(x)=A(x)+Q(x),
$$

where $A: \mathbf{R} \longrightarrow \mathbf{R}$ is an additive function and $Q: \mathbf{R} \longrightarrow \mathbf{R}$ is a quadratic function, see also [17]. A set-valued version of Drygas equation was considered by Smajdor in [23]. The Drygas functional equation on an arbitrary group G takes the form

$$
\begin{equation*}
f(x y)+f\left(x y^{-1}\right)=2 f(x)+f(y)+f\left(y^{-1}\right) . \tag{1.3}
\end{equation*}
$$

The solutions of Drygas equation in abelian group are obtained by Stetkær in [24]. Various authors studied the Drygas equation, for example Ebanks et al. [10], Faiziev and Sahoo [11], Jung and Sahoo [17], Lukasik [18], Szabo [26],Yang [27].

There are several functional equations reduced to those of the Drygas functional equation (1.1), i.e. the mixed type additive, quadratic, Jensen and Pexidered equations, we refer, for example, to [1],[2],[4]-[8], [11]-[16], [19].

The present paper is actually a natural extension and complement to the work of Bouikhalene et al [4], Lukasik [18], Sinopoulos [22], Stetkær [25] and many others [2], [3], [10], [20].

We wish through this work to bring and share answers about two aspects: the characterization for solutions of the following Drygas equation

$$
\begin{equation*}
\sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)=\kappa f(x)+\sum_{\lambda \in \Phi} f(\lambda y), x, y \in S, \tag{1.4}
\end{equation*}
$$

where $f: S \rightarrow G$ is a mapping, S is an abelian semigroup, G is an abelian group, Φ is a finite automorphism group of $S, a_{\lambda} \in S, \lambda \in \Phi$, then to give illustrative examples of such situations.

This equation is an extension form of several equations, for examples,

$$
\begin{gathered}
f(x+y)+f(x-y)=2 f(x)+f(y)+f(-y), x, y \in S, \\
f(x+y+a)+f(x+y+b)=2 f(x)+2 f(y), x, y \in S, \\
f(x+y+a)+f(x-y+b)=2 f(x)+f(y)+f(-y), x, y \in S, \\
f(x+y+a)+f(x+\sigma y+b)=2 f(x)+2 f(y), x, y \in S, \\
f(x+y)+f(x+\sigma(y))=2 f(x)+f(y)+f(\sigma(y)), x, y \in S, \\
f(x+y)+f(x+\sigma(y))=2 f(x), x, y \in S, \\
\sum_{k=0}^{m-1} f\left(x+e^{\frac{2 i \pi k}{m}} y\right)=m f(x)+\sum_{k=0}^{m-1} f\left(e^{\frac{2 i \pi k}{m}} y\right), x, y \in S=G=\mathbf{C}, m \in \mathbf{N}^{*}, m \geq 2, \\
\text { and } \sum_{k=0}^{m-1} f\left(x+e^{\frac{2 i \pi k}{m}} y+a_{i}\right)=m f(x), x, y \in S=G=\mathbf{C}, m \in \mathbf{N}^{*}, m \geq 2,
\end{gathered}
$$

for $a, b, a_{1}, \ldots, a_{m-1} \in \mathbf{C}$ where \mathbf{N}^{*} is the set of nonnegative numbers and where \mathbf{C} is the set of all complex numbers.

2. Background results

Let \mathbf{Z} designate the set of integers numbers and G^{S} the \mathbf{Z}-module consisting of all maps from an abelian semigroup S into an abelian group G. Let $n \in \mathbf{N}^{*}$ and $\mathcal{A}_{n} \in G^{S^{n}}$ be a function, then we say that \mathcal{A}_{n} is n-additive provided that
$\mathcal{A}_{n}\left(x_{1}+y_{1}, \ldots, x_{j}+y_{j}, \ldots, x_{n}+y_{n}\right)=\mathcal{A}_{n}\left(x_{1}, \ldots, x_{j}, \ldots, x_{n}\right)+\mathcal{A}_{n}\left(y_{1}, \ldots, y_{j}, \ldots, y_{n}\right)$,
for all $x_{1}, \ldots, x_{j}, \ldots, x_{1}, y_{1}, \ldots, y_{j}, \ldots, y_{n} \in E$; we say that \mathcal{A}_{n} is symmetric provided that

$$
\mathcal{A}_{n}\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)=\mathcal{A}_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

whenever $x_{1}, x_{2}, \ldots, x_{n} \in S$ and σ is a permutation of $\{1,2, \ldots, n\}$.

If $k \in \mathbf{N}^{*}$ and $\mathcal{A}_{k} \in G^{S^{k}}$ is symmetric and k-additive, let $\mathcal{A}_{k}^{*}(x)=$ $\mathcal{A}_{k}(\underbrace{x, \ldots, x}_{k})$ for all $x \in S$. And note that $\mathcal{A}_{k}^{*}(r x)=r^{k} \mathcal{A}_{k}^{*}(x)$ whenever $x \in S$ and $r \in \mathbf{N}$ also we note that

$$
\mathcal{A}_{k}(x+h, \ldots, x+h)=\sum_{i=0}^{k} C_{k}^{i} \mathcal{A}_{k}(\underbrace{x, \ldots, x}_{i}, \underbrace{h, \ldots, h}_{k-i}), x, h \in S .
$$

The function \mathcal{A}_{k}^{*} is called a monomial function of degree k associated to \mathcal{A}_{k}.

A function $p \in G^{S}$ is called a generalized polynomial function of degree n provided there exist $\mathcal{A}_{0} \in S$ and monomial functions \mathcal{A}_{k}^{*} (for $1 \leq k \leq n$) such that

$$
p(x)=\mathcal{A}_{0}+\sum_{i=1}^{n} \mathcal{A}_{k}^{*}(x)
$$

for all $x \in S$. We also need to recall the definition of the linear difference operator $\Delta_{h}, h \in S$ on G^{S} by

$$
\Delta_{h} f(x)=f(x+h)-f(x), h, x \in S
$$

Notice that these difference operators have important properties such as the linearity property

$$
\Delta_{h}(\alpha f+\beta g)=\alpha \Delta_{h}(f)+\beta \Delta_{h}(g), f, g \in G^{S}, \alpha, \beta \in \mathbf{Z}
$$

and the commutativity property

$$
\triangle_{h_{1}} \Delta_{h_{2}} \ldots \triangle_{h_{s}}=\triangle_{h_{1} h_{2} \ldots h_{s}}=\triangle_{h_{\sigma(1)} h_{\sigma(2)} \ldots h_{\sigma(s)}},
$$

where σ is a permutation of $\{1,2, \ldots, n\}$. There are also other properties such as

$$
\Delta_{h}^{n} f(x)=\sum_{i=0}^{n}(-1)^{n-i} C_{n}^{i} f(x+i h)
$$

and if $\mathcal{A}_{m}: S^{m} \rightarrow G$ is a symmetric and m-additive mapping, then we have

$$
\triangle_{h_{1} \ldots h_{k}} \mathcal{A}_{m}^{*}(x)=\left\{\begin{array}{ll}
m!\mathcal{A}_{m}\left(h_{1}, \ldots, h_{m}\right), & \text { if } k=m \\
0, & \text { if } k>m
\end{array} .\right.
$$

We will finish this section with some results which we will need in the sequel. Before that, we need to know that every abelian group G is said to be $n!$-divisible group when it is divisible uniquely by $n!$ where $n \in \mathbf{N}^{*}$.

Theorem 1. [3],[7],[12],[14],[18],[19]
Let G be an abelian group $n!$-divisible, $n \in \mathbf{N}^{*}$ and $f \in G^{S}$, then the following assertions are equivalent.

1. $\triangle_{h}^{n} f(x)=0, x, h \in S$.
2. $\triangle_{h_{1} \ldots h_{n}} f(x)=0, x, h_{1}, \ldots, h_{n} \in S$.
3. f is a generalized polynomial function of degree at most $n-1$.

Lemma 1. [18] Let G be an abelian group $n!$-divisible, $n \in \mathbf{N}^{*}, x_{1}, x_{2}, \ldots, x_{n} \in$ G, then the following properties are fulfilled.
1.

$$
\begin{equation*}
\sum_{k=1}^{n}(-1)^{n-k} C_{n}^{k} k^{i}=0, i \in\{1,2, \ldots, n-1\}, n \neq 1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n}(-1)^{n-k} C_{n}^{k} k^{n}=n!. \tag{2.2}
\end{equation*}
$$

2.

$$
\begin{equation*}
\text { If } \sum_{i=1}^{n} k^{i} x_{i}=0, k \in\{1, \ldots, n\}, \text { then } x_{1}=x_{2}=\ldots=x_{n}=0 . \tag{2.3}
\end{equation*}
$$

3. Main results

Using the difference operator, we adopt the operatorial approach to characterize the solutions of Drygas equation (1.4) which is not a Jensen equation or a quadratic equation.
In the remainder of this paper, we denote by S an abelian semigroup and by G an abelian ($\kappa+1$)!-divisible group. However, a solution f of Drygas equation (1.4) in the semigroup S can be extended to the monoid $S \cup\{0\}$ (i.e. by adding the zero element to S) by setting the value of f to zero. We will then, $f(0)=\frac{1}{2 \kappa} \sum_{\lambda \in \Phi} f\left(a_{\lambda}\right)$. Without alter the generality of the problem studied and if necessary, we will assume that S admit a zero element.

Lemma 2. Let Φ be a finite automorphism group of $S, \kappa=\operatorname{card} \Phi, a_{\lambda} \in S$ $(\lambda \in \Phi), \mathcal{A}_{0} \in G$ and $\mathcal{A}_{i} \in G^{S^{i}}(1 \leq i \leq \kappa)$ be symmetric and i-additive mappings such that

$$
\begin{equation*}
p(x)=\mathcal{A}_{0}+\sum_{i=1}^{\kappa} \mathcal{A}_{i}^{*}(x), \quad x \in S \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{p}(x, y)=\sum_{\lambda \in \Phi} p\left(x+\lambda y+a_{\lambda}\right)-\kappa p(x)-\sum_{\lambda \in \Phi} p(\lambda y), x, y \in S \tag{3.2}
\end{equation*}
$$

Then we have the following
(a)

$$
\begin{equation*}
I_{p}(0,0)=\sum_{\lambda \in \Phi} \sum_{i=1}^{\kappa} \mathcal{A}_{i}\left(a_{\lambda}\right)-\kappa \mathcal{A}_{0} \tag{3.3}
\end{equation*}
$$

and
(b) $I_{p}(x, y)=$
$I_{p}(0,0)+\sum_{\lambda \in \Phi} \sum_{j=0}^{\kappa-1} \sum_{k=0}^{\kappa-1} \sum_{2 \leq i=\max }^{\kappa} C_{i}^{j} C_{i-j}^{k} \mathcal{A}_{i}(\underbrace{x, \ldots, x}_{k}, a_{\lambda}, \ldots, a_{\lambda}, \underbrace{\lambda y, \ldots, \lambda y}_{j})$,
for all $x, y \in S$, where $\max =\max \{j+1, k+1, j+k\}$.
Proof. By direct calculation, we show that

$$
I_{p}(0,0)=\sum_{\lambda \in \Phi} p\left(a_{\lambda}\right)-2 \kappa p(0)
$$

Thus, by replacing p by its expression of $\mathcal{A}_{i}, 0 \leq i \leq \kappa$ we obtain (a). For every $x, y \in S$, we have

$$
\begin{aligned}
& I_{p}(x, y) \\
= & \kappa \mathcal{A}_{0}+\sum_{\lambda \in \Phi}\left(\sum_{i=1}^{\kappa}\left(\mathcal{A}_{i}^{*}\left(x+\lambda y+a_{\lambda}\right)\right)\right)-\sum_{\lambda \in \Phi}(p(x)+p(\lambda y)) \\
= & \sum_{\lambda \in \Phi}(\sum_{i=1}^{\kappa}(\sum_{j=0}^{i} C_{i}^{j} \mathcal{A}_{i}(x+a_{\lambda}, \ldots, x+a_{\lambda}, \underbrace{\lambda y, \ldots, \lambda y}_{j})))-\sum_{i=1}^{\kappa} \kappa \mathcal{A}_{i}^{*}(x) \\
- & \sum_{\lambda \in \Phi} \mathcal{A}_{i}^{*}(\lambda y)-\kappa \mathcal{A}_{0} \\
= & \sum_{\lambda \in \Phi}(\sum_{i=1}^{\kappa}(\sum_{j=0}^{i} C_{i}^{j} \sum_{k=0}^{i-j} C_{i-j}^{k} \mathcal{A}_{i}(\underbrace{x, \ldots, x}_{k}, a_{\lambda}, \ldots, a_{\lambda}, \underbrace{\lambda y, \ldots, \lambda y}_{j}))
\end{aligned}
$$

$$
\begin{aligned}
& -\sum_{i=1}^{\kappa} \kappa \mathcal{A}_{i}^{*}(x) \\
- & \sum_{\lambda \in \Phi} \mathcal{A}_{i}^{*}(\lambda y)-\kappa \mathcal{A}_{0} \\
= & I_{p}(0,0)+\sum_{\lambda \in \Phi} \sum_{j=0}^{\kappa-1} \sum_{k=0}^{\kappa-1} \sum_{2 \leq i=\max \{j+1, k+1, j+k\}}^{\kappa} C_{i}^{j} C_{i-j}^{k} \\
& \mathcal{A}_{i}(\underbrace{x, \ldots, x}_{k}, a_{\lambda}, \ldots, a_{\lambda}, \underbrace{\lambda_{y}, \ldots, \lambda y}_{j}),
\end{aligned}
$$

from where (b) follows.

Lemma 3. Let Φ be a finite automorphism group of $S, \kappa=\operatorname{card} d, a_{\lambda} \in S$ $(\lambda \in \Phi), \mathcal{A}_{0} \in G$ and $\mathcal{A}_{i} \in G^{S^{i}}(1 \leq i \leq \kappa)$ be symmetric and i-additive mappings such that

$$
\begin{equation*}
p(x)=\mathcal{A}_{0}+\sum_{i=1}^{\kappa} \mathcal{A}_{i}^{*}(x), \quad x \in S \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{p}(x, y)=\sum_{\lambda \in \Phi} p\left(x+\lambda y+a_{\lambda}\right)-\kappa p(x)-\sum_{\lambda \in \Phi} p(\lambda y), x, y \in S . \tag{3.6}
\end{equation*}
$$

Then the following are equivalent.
1.

$$
\begin{equation*}
I_{p}(x, y)=0, x, y \in S \tag{3.7}
\end{equation*}
$$

2. p is a solution of Eq. (1.4).
3. $\mathcal{A}_{0} \in G$ and the mappings $\mathcal{A}_{i}, 1 \leq i \leq \kappa$, satisfy the following two equalities,
a)

$$
\begin{equation*}
\sum_{\lambda \in \Phi} \sum_{i=1}^{\kappa} \mathcal{A}_{i}^{*}\left(a_{\lambda}\right)=\kappa \mathcal{A}_{0} \tag{3.8}
\end{equation*}
$$

and
b)

$$
\begin{align*}
& \sum_{i=\max }^{\kappa} C_{i}^{j} C_{i-j}^{k} \sum_{\lambda \in \Phi} \mathcal{A}_{i}(\underbrace{x, x, \ldots, x}_{k}, a_{\lambda}, \ldots, a_{\lambda}, \underbrace{\lambda y, \lambda y, \ldots, \lambda y}_{j})=0, x, y \in S, \\
& (3.9) \tag{3.9}\\
& 0 \leq k \leq \kappa-1,0 \leq j \leq \kappa-1,2 \leq i=\max =\max \{k+1, j+ \\
& 1, j+k\} \leq \kappa .
\end{align*}
$$

Proof. Note first that by Lemma 2 the condition (2) is satisfied if and only if the condition (1) is satisfied. Suppose that (1) is satisfied, then by Lemma 2 we obtain (3)(a) and we have:

$$
\begin{gather*}
I_{p}(x, y)=\sum_{\lambda \in \Phi} \sum_{j=0}^{\kappa-1} \sum_{k=0}^{\kappa-1} \sum_{2 \leq i=\max (j+1, k+1, j+k)}^{\kappa} C_{i}^{j} C_{i-j}^{k} \\
\mathcal{A}_{i}(\underbrace{x, \ldots, x}_{k}, a_{\lambda}, \ldots, a_{\lambda}, \underbrace{\lambda y, \ldots, \lambda y}_{j})=0, \tag{3.10}
\end{gather*}
$$

for all $x, y \in S$. To prove (3) we define, for every $0 \leq j \leq \kappa-1,0 \leq k \leq \kappa-1$ the mappings $g_{j}, h_{(k, j)}: S \times S: \rightarrow G$ by

$$
\begin{aligned}
& g_{j}(x, y)=\sum_{\lambda \in \Phi} \sum_{k=0}^{\kappa-1} \sum_{i=j+k}^{\kappa} C_{i}^{j} C_{i-j}^{k} \mathcal{A}_{i}(\underbrace{x, \ldots, x}_{k}, a_{\lambda}, \ldots, a_{\lambda}, \underbrace{\lambda y, \ldots, \lambda y}_{j}), x, y \in S, \\
& h_{(k, j)}(x, y)=\sum_{\lambda \in \Phi} \sum_{1 \leq i=j+k}^{\kappa} C_{i}^{j} C_{i-j}^{k} \mathcal{A}_{i}(\underbrace{x, \ldots, x}_{k}, a_{\lambda}, \ldots, a_{\lambda}, \underbrace{\lambda y, \ldots, \lambda y}_{j}), x, y \in S .
\end{aligned}
$$

Note that,

$$
I_{p}(x, y)=\sum_{j=0}^{\kappa-1} g_{j}(x, y), \sum_{k=0}^{\kappa-1} h_{(k, j)}(x, y)=g_{j}(x, y)
$$

and

$$
\begin{gathered}
g_{0}(x, y)=h_{(0, j)}(x, y)=h_{(k, 0)}(x, y)=0, \text { for all } x, y \in S . \text { However, as } \\
g_{j}(x, n y)=n^{j} g_{j}(x, y), \quad n \in \mathbf{N}^{*}, x, y \in S, 0 \leq j \leq \kappa-1,
\end{gathered}
$$

we have

$$
\sum_{j=0}^{\kappa-1} n^{j} g_{j}(x, y)=\sum_{j=0}^{\kappa-1} g_{j}(x, n y)=0, n \in \mathbf{N}^{*}, x, y \in S
$$

By Lemma 1, we get

$$
g_{j}(x, y)=0, \quad x, y \in S, 0 \leq j \leq \kappa-1 .
$$

We deduced from the definition of $h_{(k, j)}$ that
$h_{(k, j)}(n x, y)=n^{k} h_{(k, j)}(x, y), \quad n \in \mathbf{N}^{*}, x, y \in S, 0 \leq k \leq \kappa-j, 0 \leq j \leq \kappa-1$, and we have

$$
\begin{gathered}
\sum_{k=0}^{\kappa-1} n^{k} h_{(k, j)}(x, y)=\sum_{k=0}^{\kappa-1} h_{(k, j)}(n x, y)=g_{j}(n x, y)=0, n \in \mathbf{N}^{*}, x, y \in S, \\
0 \leq j \leq \kappa-1
\end{gathered}
$$

By the same manner as above we obtain

$$
h_{(k, j)}(x, y)=0, j \in\{0, \ldots, \kappa-1\}, k \in\{0, \ldots, \kappa-1\} .
$$

Thus, Lemma 1 gives the expected result, (3)(b). The converse of this implication is immediate. This completes the proof.

Lemma 4. Let Φ be a finite automorphism group of $S, \kappa=\operatorname{card} \Phi, a_{\lambda} \in S$ $(\lambda \in \Phi)$, and $f \in G^{S}$ such that

$$
\begin{equation*}
\sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)=\kappa f(x)+\sum_{\lambda \in \Phi} f(\lambda y), \quad x, y \in S . \tag{3.11}
\end{equation*}
$$

Then, for every $x, y \in S, \Delta_{y}^{\kappa} f(x)$ is independent of x and we have

$$
\begin{equation*}
\Delta_{y}^{\kappa+1} f(x)=0, \quad x, y \in S \tag{3.12}
\end{equation*}
$$

Proof. The proof used here goes along the same lines as the one in [18]. We will denote by $\Phi_{i, j} \subset \Phi, i \in\{0, \ldots, \kappa\}, j \in\left\{1, \ldots, C_{\kappa}^{i}\right\}$ the C_{κ}^{i} pairwise different sets such that $\operatorname{car} d \Phi_{i, j}=\kappa-i$ and by $g \in G^{S}$, the application defined by

$$
g(y)=-\sum_{i=0}^{\kappa}(-1)^{\kappa-i} \sum_{j=1}^{C_{\kappa}^{i}} f\left(\sum_{\lambda \in \mathcal{G}_{i, j}} \lambda y\right), y \in S .
$$

Let $\lambda \in \Phi, i \in\{0, \ldots, \kappa\}$ and $j \in\left\{1, \ldots, C_{\kappa}^{i}\right\}$, then the set $\lambda \Phi_{i j} \subset \Phi$ has $\kappa-i$ elements. So, there is $k \in\left\{1, \ldots, C_{\kappa}^{i}\right\}$ satisfies the following two equalities

$$
\lambda \Phi_{i j}=\Phi_{i, k} \text { and } \lambda^{-1} \Phi_{i, k}=\Phi_{i, j} .
$$

It follows,

$$
\begin{equation*}
\sum_{j=1}^{C_{k}^{i}} f\left(\sum_{\mu \in \Phi_{i, j}} \lambda \mu y\right)=\sum_{j=1}^{C_{K}^{i}} f\left(\sum_{\mu \in \Phi_{i, j}} \mu y\right), x \in S \tag{3.13}
\end{equation*}
$$

For given x, y, we set

$$
u_{i}=x+i y, v_{i j}=\sum_{\mu \in \Phi_{i, j}} \mu y, \quad i \in\{0, \ldots, \kappa\}, j \in\left\{1, \ldots, C_{\kappa}^{i}\right\} .
$$

Otherwise, let $\lambda \in \Phi, i \in\{0, \ldots, \kappa\}$ and $j \in\left\{1, \ldots, C_{\kappa}^{i}\right\}$, then we have the following two cases:

Case 1. Let $\lambda^{-1} \in \Phi_{i, j}$, then $i \neq \kappa$ and, $\Phi_{i, j}=\Phi_{i+1, j} \cup\left\{\lambda^{-1}\right\}$.
It follows that

$$
\begin{aligned}
u_{i}+\lambda v_{i j} & =x+i y+\sum_{\mu \in \Phi_{i, j}} \lambda \mu y \\
& =x+(i+1) y+\sum_{\mu \in \Phi_{i+1, k}} \lambda \mu y \\
& =u_{i+1}+\lambda v_{i+1, k},
\end{aligned}
$$

for a suitable k in $\left\{1, \ldots, C_{\kappa}^{i+1}\right\}$.
Case 2. Let $\lambda^{-1} \in \Phi_{i, j}$, then $i \neq 0$ and, $\Phi_{i-1, j}=\Phi_{i, j} \cup\left\{\lambda^{-1}\right\}$. We can write,

$$
\begin{aligned}
u_{i}+\lambda v_{i, j} & =x+i y+\sum_{\mu \in \Phi_{i, j}} \lambda \mu y \\
& =x+(i-1) y+\sum_{\mu \in \Phi_{i-1, k}} \lambda \mu y \\
& =u_{i-1}+\lambda v_{i-1, k}
\end{aligned}
$$

for a suitable k in $\left\{1, \ldots, C_{\kappa}^{i+1}\right\}$. Taking into account (3.13) and the calculation results of the previous two cases, we have:

$$
\begin{aligned}
& \kappa \Delta_{y}^{\kappa} f(x)-\kappa g(y) \\
= & \kappa \sum_{i=0}^{\kappa}(-1)^{\kappa-i} C_{\kappa}^{i} f(x+i y)+\kappa \sum_{i=0}^{\kappa-1}(-1)^{\kappa-i} \sum_{j=1}^{C_{\kappa}^{i}} f\left(\sum_{\mu \in \Phi_{i, j}} \mu y\right) \\
= & \kappa \sum_{i=0}^{\kappa}(-1)^{\kappa-i} C_{\kappa}^{i} f(x+i y+)+\sum_{i=0}^{\kappa-1}(-1)^{\kappa-i} \sum_{j=1}^{C_{\kappa}^{i}} \sum_{\lambda \in \Phi} f\left(\sum_{\mu \in \Phi_{i, j}} \lambda \mu y\right) \\
= & \sum_{i=0}^{\kappa}(-1)^{\kappa-i} \sum_{j=1}^{C_{\kappa}^{i}}\left(\kappa f\left(u_{i}\right)+\sum_{\lambda \in \Phi} f\left(\lambda v_{i j}\right)\right) \\
= & \sum_{i=0}^{\kappa}(-1)^{\kappa-i} \sum_{j=1}^{C_{\kappa}^{i}} \sum_{\lambda \in \Phi} f\left(u_{i}+\lambda v_{i j}+a_{\lambda}\right) \\
= & 0, x, y \in S .
\end{aligned}
$$

This shows that for every $x, y \in S, \Delta_{y}^{\kappa} f(x)$ is independent of x and

$$
\Delta_{y}^{\kappa} f(x+y)-\Delta_{y}^{\kappa} f(x)=0, x, y \in S,
$$

and more accurately

$$
\Delta_{y}^{\kappa+1} f(x)=0, x, y \in S,
$$

from which the desired result follows.
Remark 1. Under the assumptions of Lemma 4, if in addition we assume that

$$
\sum_{\lambda \in \Phi} f(\lambda y)=0, y \in S
$$

then

$$
\Delta_{y}^{\kappa} f(x)=0, \quad x, y \in S
$$

Theorem 2. Let $f \in G^{S}$, Φ a finite automorphism group of $S, \kappa=\operatorname{car} d \Phi$ and $a_{\lambda} \in S(\lambda \in \Phi)$. Then the function $f: S \rightarrow G$ is a solution of equation

$$
\begin{equation*}
\sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)=\kappa f(x)+\sum_{\lambda \in \Phi} f(\lambda y), x, y \in S, \tag{3.14}
\end{equation*}
$$

if and only if f has the following form

$$
\begin{equation*}
f(x)=\mathcal{A}_{0}+\sum_{i=1}^{\kappa} \mathcal{A}_{i}^{*}(x), x \in S, \tag{3.15}
\end{equation*}
$$

where $\mathcal{A}_{0} \in G$ and $\mathcal{A}_{k}: S^{k} \rightarrow G, k \in\{1,2, \ldots, \kappa\}$ are symmetric and k-additive functions satisfying the two conditions:
i) $\sum_{i=\max }^{\kappa} C_{i}^{j} C_{i-j}^{k} \sum_{\lambda \in \Phi} \mathcal{A}_{i}(\underbrace{x, x, \ldots, x}_{k}, a_{\lambda}, \ldots, a_{\lambda}, \underbrace{\lambda y, \lambda y, \ldots, \lambda y}_{j})=0, x, y \in$

S,

$0 \leq k \leq \kappa-1,0 \leq j \leq \kappa-1,2 \leq \max =\max \{j+1, k+1, k+j\} \leq$ $i \leq \kappa$ and
ii) $\sum_{\lambda \in \Phi} \sum_{i=1}^{\kappa} \mathcal{A}_{i}^{*}\left(a_{\lambda}\right)=\kappa \mathcal{A}_{0}$.

Proof. The necessary condition is obtained by Lemma 4, Theorem 1 and Lemma 3. By Lemma 3 we get the sufficient condition which completes the proof of Theorem.

Remark 2. Under the assumptions of Theorem 2, if in addition we assume that

$$
\sum_{\lambda \in \Phi} f(\lambda y)=0, y \in S
$$

then the result (with some modifications on the control of indices i, j and k) can be obtained by requiring the assumption " G is $\kappa!$-divisible" instead of " G is $(\kappa+1)$!-divisible".

4. Consequences

The following corollaries are immediate consequences of Theorem 2. On this occasion, we obtain the following three corollaries 1,2 and 3 which have been proved by Sinopoulos [22], Stetkær [25], Lukasik [18], Bouikhalene and Elqorachi [4] respectively.

Corollary 1. [22][25] Let $\sigma: S \rightarrow S$ be an involution of S and G be an abelian group divisible by 2. Then the function $f: S \rightarrow G$ is a solution of equation

$$
\begin{equation*}
f(x+y)+f(x+\sigma(y))=2 f(x)+f(y)+f(\sigma(y)), \quad x, y \in S \tag{4.1}
\end{equation*}
$$

if and only if f has the following form

$$
\begin{equation*}
f(x)=\mathcal{A}_{1}(x)+\mathcal{A}_{2}^{*}(x), x \in S, \tag{4.2}
\end{equation*}
$$

where $\mathcal{A}_{1}: S \rightarrow G$ is an arbitrary additive function and $\mathcal{A}_{2}: S \times S \rightarrow G$ is an arbitrary symmetric biadditive function with $\mathcal{A}_{2}(x, y)+\mathcal{A}_{2}(x, \sigma(y))=$ $0, x, y \in S$.

Corollary 2. [18] Let S be an abelian semigroup, G be an abelian group divisible by $\kappa!, \Phi$ be a finite automorphism group of S with order κ. Then the function $f: S \rightarrow G$ is a solution of equation

$$
\begin{equation*}
\sum_{\lambda \in \Phi} f(x+\lambda y)=\kappa f(x)+\sum_{\lambda \in \Phi} f(\lambda y), x, y \in S, \tag{4.3}
\end{equation*}
$$

if and only if f has the following form

$$
\begin{equation*}
f(x)=\sum_{i=1}^{\kappa} \mathcal{A}_{i}^{*}(x), x \in S \tag{4.4}
\end{equation*}
$$

where $\mathcal{A}_{k}: S^{k} \rightarrow G, k \in\{1,2, \ldots, \kappa\}$ are arbiyrary symmetric and k additive functions which satisfy the following condition:

$$
\begin{aligned}
& \sum_{\lambda \in \Phi} \mathcal{A}_{i}(x, x, \ldots, x, \underbrace{\lambda y, \lambda y, \ldots, \lambda y}_{j})=0, x, y \in S, \quad 1 \leq j \leq i-1,2 \leq \\
& i \leq \kappa .
\end{aligned}
$$

Proof. In this case, with the notations of Theorem 2, as $\left\{a_{\lambda}, \lambda \in \Phi\right\}=$ $\{0\}, k+j=i$.

Furthermore, we can write that

$$
\begin{aligned}
0 & =\sum_{i=\max (k+j, k+1)} C_{i}^{k} C_{j}^{i-j} \sum_{\lambda \in \Phi} \mathcal{A}_{i} k(\underbrace{x, \ldots, x}, a_{\lambda}, \ldots, a_{\lambda}, j \underbrace{\lambda y, \ldots, \lambda y}) \\
& =\sum_{i=k+j}^{\kappa} C_{i}^{k} \sum_{\lambda \in \Phi} \mathcal{A}_{i} k(\underbrace{x, \ldots, x}, j \underbrace{\lambda y, \ldots, \lambda y}) \\
& =\sum_{j=1}^{i-1} C_{i}^{k} \sum_{\lambda \in \Phi} \mathcal{A}_{i}(x, \ldots, x, j \underbrace{\lambda y, \ldots, \lambda y}), x, y \in S, 2 \leq i \leq \kappa .
\end{aligned}
$$

For $1 \leq j \leq i-1,2 \leq i \leq \kappa$, we define the mappings $q_{(j, i)}: S \times S \rightarrow G$ by

$$
q_{(j, i)}(x, y)=C_{i}^{j} \sum_{\lambda \in \Phi} \mathcal{A}_{i}(x, \ldots, x, j \underbrace{\lambda y, \lambda y, \ldots, \lambda y}) x, y \in S .
$$

So, we have

$$
q_{(j, i)}(x, n y)=n^{j} q_{(j, i)}(x, y), x, y \in S, n \in \mathbf{N}^{*}, 0 \leq j \leq i-1,2 \leq i \leq \kappa
$$

and

$$
\sum_{j=1}^{\kappa} n^{j} q_{(j, i)}(x, y)=\sum_{j=1}^{\kappa} q_{(j, i)}(x, n y)=0, x, y \in S, 2 \leq i \leq \kappa .
$$

According to Lemma1 we get the sought result.

Corollary 3. [4] Let S be an abelian group, G be a Banach space and $a \in S$. Then, the general solution $f: S \rightarrow G$ of the functional equation

$$
\begin{equation*}
f(x+y+a)=f(x)+f(y), \quad x, y \in S, \tag{4.5}
\end{equation*}
$$

is

$$
\begin{equation*}
f(x)=\mathcal{A}_{1}(a)+\mathcal{A}_{1}(x), x \in S \tag{4.6}
\end{equation*}
$$

where $\mathcal{A}_{1}: S \rightarrow G$ is an arbitrary additive function.
In the following corollaries we prove new others special cases of the equation 1.4 that is, according to our knowledge, not in the literature.

Corollary 4. Let S be an abelian semigroup, G be an abelian group divisible by 2 and $a, b \in S$. Then, the general solution $f: S \rightarrow G$ of the functional equation

$$
\begin{equation*}
f(x+y+a)+f(x-y+b)=2 f(x)+f(y)+f(-y), \quad x, y \in S, \tag{4.7}
\end{equation*}
$$

is

$$
\begin{equation*}
f(x)=\frac{1}{2}\left(\mathcal{A}_{1}(a+b)\right)+\mathcal{A}_{1}(x)+\mathcal{A}_{2}^{*}(x), x \in S \tag{4.8}
\end{equation*}
$$

where $\mathcal{A}_{1}: S \rightarrow G$ is an arbitrary additive function and $\mathcal{A}_{2}: S \times S \rightarrow G$ is an arbitrary symmetric biadditive function with $\mathcal{A}_{2}(x, a)=\mathcal{A}_{2}(x, b)=$ $0, x \in S$.

Corollary 5. Let S be an abelian semigroup, σ be an involution of S, G be an abelian group divisible by 2 and $a, b \in S$. Then, the general solution $f: S \rightarrow G$ of the functional equation
$(4 . f)(x+y+a)+f(x+\sigma(y)+b)=2 f(x)+f(y)+f(\sigma(y)), \quad x, y \in S$,
is

$$
\begin{equation*}
f(x)=\frac{1}{2}\left(\mathcal{A}_{1}(a+b)\right)+\mathcal{A}_{1}(x)+\mathcal{A}_{2}^{*}(x), x \in S \tag{4.10}
\end{equation*}
$$

where $\mathcal{A}_{1}: S \rightarrow G$ is an arbitrary additive function and $\mathcal{A}_{2}: S \times S \rightarrow G$ is an arbitrary symmetric biadditive function with

$$
\mathcal{A}_{2}(x, a)=\mathcal{A}_{2}(x, b)=0, x \in S \text { and } \mathcal{A}_{2}(x, y)+\mathcal{A}_{2}(x, \sigma(y))=0, x, y \in S
$$

Proof. Keeping in mind the notation of Theorem 2, we apply it where $\kappa=2$. Then there are an element $\mathcal{A}_{0} \in G$ and symmetric i-additives mappings $\mathcal{A}_{i} \in G^{S^{i}}, i \in\{1,2\}$ satisfy

1. $f(x)=\mathcal{A}_{0}+\mathcal{A}_{1}(x)+\mathcal{A}_{2}^{*}(x), x \in S$ on the other side, they satisfy the following conditions of Theorem 2 :
2. i) $k=0, j=1, \mathcal{A}_{2}(a, y)+\mathcal{A}_{2}(b, \sigma(y))=0, y \in S$,
ii) $k=1, j=0, \mathcal{A}_{2}(y, a)+\mathcal{A}_{2}(y, b)=0, y \in S$,
iii) $k=1, j=1, \mathcal{A}_{2}(x, y)+\mathcal{A}_{2}(x, \sigma(y))=0, x, y \in S$.

Thus, $\mathcal{A}_{2}(y, a)=\mathcal{A}_{2}(y, b)=0, y \in S ; \mathcal{A}_{2}(x, y)+\mathcal{A}_{2}(x, \sigma(y))=0, x, y \in S$ and $2 \mathcal{A}_{0}=\mathcal{A}_{1}(a+b)$.

Corollary 6. Let j be a primitive cube root of unity and a be complex number. Then, the general continuous solution $f: \mathbf{C} \rightarrow \mathbf{C}$ of the functional equation
$f(x+y+j a)+f\left(x+j y+j^{2} a\right)+f\left(x+j^{2} y+a\right)=3 f(x)+f(y)+f(j y)+f\left(j^{2} y\right), \quad x, y \in \mathbf{C}$, (4.11)
is of the form

$$
\begin{equation*}
f(x)=\alpha_{1} x+\beta_{1} \bar{x}+\alpha_{2} x^{2}+\beta_{2} \bar{x}^{2} \tag{4.12}
\end{equation*}
$$

where $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2} \in \mathbf{C}$.

Proof. According the Theorem 2, there are $\alpha_{0} \in \mathbf{C}$, and symmetric i-additive mappings $\mathcal{A}_{i}: \mathbf{C}^{i} \rightarrow \mathbf{C}, i \in\{1,2,3\}$ such that

$$
f(z)=\alpha_{0}+\mathcal{A}_{1}(z)+\mathcal{A}_{2}^{*}(z)+\mathcal{A}_{3}^{*}(z), z \in \mathbf{C} .
$$

Taking into account that j is a primitive cube root of unity, we have $1+j+j^{2}=0$. In addition, the continuity of f show that $\mathcal{A}_{1}, \mathcal{A}_{2}$ et \mathcal{A}_{3} can be written as the following

$$
\begin{aligned}
& \mathcal{A}_{1}(z)=\alpha_{1} z+\beta_{1} \bar{z}, \alpha_{1}, \alpha_{2} \in \mathbf{C}, \\
& \mathcal{A}_{2}^{*}(z)=\alpha_{2} z^{2}+\beta_{2} \bar{z}^{2}+\beta_{3}|z|^{2}, \alpha_{2}, \beta_{2}, \beta_{3} \in \mathbf{C}, \\
& \mathcal{A}_{3}^{*}(z)=\gamma_{1} z^{3}+\gamma_{2} \bar{z}^{3}, \gamma_{1}, \gamma_{2} \in \mathbf{C} .
\end{aligned}
$$

So the conditions of Theorem 2 do not satisfy where $\gamma_{1}=\gamma_{2}=\beta_{3}=0$ which finish the proof.

References

[1] M. Ait Sibaha, B. Bouikhalene, E. Elqorachi, Hyers-Ulam-Rassias stability of the K-quadratic functional equation, J. Ineq. Pure and appl. Math 8, (2007).
[2] L. M. Arriola, W. A. Beyer, Stability of the Cauchy functional equation over p-adic fields, Real Analysis Exchange, 31 (1), pp. 125-132, (2005).
[3] J. Baker, A general functional equation and its stability, Proceedings of the American Mathematical Society, 133(6), pp. 1657-1664, (2005).
[4] B. Bouikhalene and E. Elqorachi, Hyers-Ulam-Rassias stability of the Cauchy linear functional equation, Tamsui Oxford Journal of Mathematical Sciences 23 (4), pp. 449-459, (2007).
[5] A. Charifi, B. Bouikhalene, E. Elqorachi, Hyers-Ulam-Rassias stability of a generalized Pexider functional equation, Banach J. Math. Anal, 1 (2), pp. 176-185, (2007).
[6] A. Charifi,B. Bouikhalene, E. Elqorachi, A. Redouani, Hyers-UlamRassias stability of a generalized Jensen functional equation, Aust. J. Math. Anal. Appl, 6 (1), pp. 1-16, (2009).
[7] AB. Chahbi, A. Charifi, B. Bouikhalene, S. Kabbaj, Operatorial approach to the non-Archimedean stability of a Pexider K-quadratic functional equation, Arab Journal of Mathematical Sciences, 21 (1), pp. 67-83, (2015).
[8] D. Z̆. Djoković, A representation theorem for $\left(X_{1}-1\right)\left(X_{2}-1\right) \ldots\left(X_{n}-1\right)$ and its applications, In Annales Polonici Mathematici 22 (2), pp. 189198, (1969).
[9] H. Drygas, Quasi-inner products and their applications, Springer Netherlands., pp. 13-30, (1987).
[10] B. R. Ebanks, P. L. Kannappan, P. K. Sahoo, A common generalization of functional equations characterizing normed and quasi-inner-product spaces, Canad. Math. Bull, 35 (3), pp. 321-327, (1992).
[11] V. A. Faiziev, P. K. Sahoo, On Drygas functional equation on groups, Int. J. Appl. Math. Stat. 7, pp. 59-69, (2007).
[12] M. Frechet, Une définition fonctionnelles des polynômes, Nouv. Ann. 9, pp. 145-162, (1909).
[13] A. Giànyi, A characterization of monomial functions, Aequationes Math. 54, pp. 343-361, (1997).
[14] D. H. Hyers, Transformations with bounded n-th differences, Pacific J. Math., 11, pp. 591-602, (1961).
[15] S. -M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg, 70, pp. 175-190, (2000).
[16] S. -M. Jung, P. K. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc., 38 (3), pp. 645-656, (2001).
[17] S.-M. Jung, P. K. Sahoo, Stability of a functional equation of Drygas, Aequationes Math., 64 (3), pp. 263-273, (2002).
[18] R. Lukasik, Some generalization of Cauchy's and the quadratic functional equations, Aequat. Math., 83, pp. 75-86, (2012).
[19] S. Mazur, W. Orlicz, Grundlegende Eigenschaften der Polynomischen Operationen, Erst Mitteilung, Studia Math., 5, pp. 50-68, (1934).
[20] A. K. Mirmostafaee, Non-Archimedean stability of quadratic equations, Fixed Point Theory, 11 (1), pp. 67-75, (2010).
[21] P. K. Sahoo and Pl. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton, Florida, (2011).
[22] P. Sinopoulos, Functional equations on semigroups, Aequationes Math. 59, pp.255-261, (2000).
[23] W. Smajdor, On set-valued solutions of a functional equation of Drygas, Aequ. Math. 77, pp. 89-97, (2009).
[24] H. Stetkær, Functional equations on abelian groups with involution. II, Aequationes Math. 55, pp. 227-240, (1998).
[25] H. Stetkær, Functional equations involving means of functions on the complex plane, Aequationes Math. 55, pp. 47-62, (1998).
[26] Gy. Szabo, Some functional equations related to quadratic functions, Glasnik Math. 38, pp. 107-118, (1983).
[27] D. Yang, Remarks on the stability of Drygas equation and the Pexiderquadratic equation, Aequationes Math. 68, pp. 108-116, (2004).

A. Charifi

Department of Mathematics, Faculty of Sciences, Ibn Tofail University, BP: 133, 14000,
Kenitra,
Morocco
e-mail : charifi2000@yahoo.fr

M. Almahalebi

Department of Mathematics, Faculty of Sciences, Ibn Tofail University, BP: 133, 14000,
Kenitra,
Morocco
e-mail : muaadh1979@hotmail.fr
and

S. Kabbaj

Department of Mathematics, Faculty of Sciences,
Ibn Tofail University, BP: 133, 14000,
Kenitra,
Morocco
e-mail : samkabbaj@yahoo.fr

