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Abstract

We obtain the solutions of the following Drygas functional equa-
tionP

λ∈Φ f(x+ λy + aλ) = κf(x) +
P

λ∈Φ f(λy), x, y ∈ S,
where S is an abelian semigroup, G is an abelian group, f ∈ GS, Φ

is a finite automorphism group of S with order κ, and aλ ∈ S, λ ∈ Φ.
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1. Introduction

Characterizing quasi-inner product spaces, Drygas considers in [9] the func-

tional equation f(x)+f(y)=f(x-y)+
n
f
³
x+y
2

´
− f

³
x−y
2

´o
which can be reduced to the following equation (see [21], Remark 9.2, p.
131)

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y), x, y ∈ R(1.1)

where R denotes the set of real numbers.
This equation is known in the literature as Drygas equation and is a

generalization of the quadratic functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y), x, y ∈ R.(1.2)

The general solution of Drygas equation was given by Ebanks, Kannappan
and Sahoo in [10]. It has the form

f(x) = A(x) +Q(x),

where A : R −→ R is an additive function and Q : R −→ R is a quadratic
function, see also [17]. A set-valued version of Drygas equation was consid-
ered by Smajdor in [23]. The Drygas functional equation on an arbitrary
group G takes the form

f(xy) + f(xy−1) = 2f(x) + f(y) + f(y−1).(1.3)

The solutions of Drygas equation in abelian group are obtained by Stetkær
in [24]. Various authors studied the Drygas equation, for example Ebanks
et al. [10], Făiziev and Sahoo [11], Jung and Sahoo [17], ÃLukasik [18], Szabo
[26],Yang [27].

There are several functional equations reduced to those of the Drygas
functional equation (1.1), i.e. the mixed type additive, quadratic, Jensen
and Pexidered equations, we refer, for example, to [1],[2],[4]-[8], [11]-[16],
[19].

The present paper is actually a natural extension and complement to
the work of Bouikhalene et al [4], ÃLukasik [18], Sinopoulos [22], Stetkær
[25] and many others [2],[3], [10],[20].

We wish through this work to bring and share answers about two as-
pects: the characterization for solutions of the following Drygas equationX

λ∈Φ
f(x+ λy + aλ) = κf(x) +

X
λ∈Φ

f(λy), x, y ∈ S,(1.4)
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where f : S → G is a mapping, S is an abelian semigroup, G is an abelian
group, Φ is a finite automorphism group of S, aλ ∈ S, λ ∈ Φ, then to give
illustrative examples of such situations.

This equation is an extension form of several equations, for examples,

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y), x, y ∈ S,

f(x+ y + a) + f(x+ y + b) = 2f(x) + 2f(y), x, y ∈ S,

f(x+ y + a) + f(x− y + b) = 2f(x) + f(y) + f(−y), x, y ∈ S,

f(x+ y + a) + f(x+ σy + b) = 2f(x) + 2f(y), x, y ∈ S,

f(x+ y) + f(x+ σ(y)) = 2f(x) + f(y) + f(σ(y)), x, y ∈ S,

f(x+ y) + f(x+ σ(y)) = 2f(x), x, y ∈ S,

m−1X
k=0

f(x+e
2iπk
m y) = mf(x)+

m−1X
k=0

f(e
2iπk
m y), x, y ∈ S = G = C, m ∈ N∗,m ≥ 2,

and
m−1X
k=0

f(x+e
2iπk
m y+ai) = mf(x), x, y ∈ S = G = C, m ∈ N∗,m ≥ 2,

for a, b, a1, ..., am−1 ∈ C where N∗ is the set of nonnegative numbers and
where C is the set of all complex numbers.

2. Background results

Let Z designate the set of integers numbers and GS the Z-module consisting
of all maps from an abelian semigroup S into an abelian group G. Let
n ∈ N∗ and An ∈ GSn be a function, then we say that An is n-additive
provided that

An(x1+y1, ..., xj+yj , ..., xn+yn) = An(x1, ..., xj , ..., xn)+An(y1, ..., yj , ..., yn),

for all x1, ..., xj , ..., x1, y1, ..., yj , ..., yn ∈ E; we say that An is symmetric
provided that

An(xσ(1), xσ(2), ..., xσ(n)) = An(x1, x2, ..., xn)

whenever x1, x2, ..., xn ∈ S and σ is a permutation of {1, 2, ..., n}.
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If k ∈ N∗ and Ak ∈ GSk is symmetric and k-additive, let A∗k(x) =
Ak(x, ..., x| {z }

k

) for all x ∈ S. And note that A∗k(rx) = rkA∗k(x) whenever

x ∈ S and r ∈ N also we note that

Ak(x+ h, ..., x+ h) =
kX
i=0

Ci
kAk(x, ..., x| {z }

i

, h, ..., h| {z }
k−i

), x, h ∈ S.

The function A∗k is called a monomial function of degree k associated to
Ak.

A function p ∈ GS is called a generalized polynomial function of degree
n provided there exist A0 ∈ S and monomial functions A∗k (for 1 ≤ k ≤ n)
such that

p(x) = A0 +
nX
i=1

A∗k(x),

for all x ∈ S. We also need to recall the definition of the linear difference
operator ∆h, h ∈ S on GS by

∆hf(x) = f(x+ h)− f(x), h, x ∈ S.

Notice that these difference operators have important properties such as
the linearity property

∆h(αf + βg) = α∆h(f) + β∆h(g), f, g ∈ GS , α, β ∈ Z,

and the commutativity property

4h14h2 ...4hs = 4h1h2...hs = 4hσ(1)hσ(2)...hσ(s) ,

where σ is a permutation of {1, 2, ..., n}. There are also other properties
such as

∆n
hf(x) =

nX
i=0

(−1)n−iCi
nf(x+ ih)

and if Am : S
m → G is a symmetric and m-additive mapping, then we have

4h1...hkA∗m(x) =
(

m!Am(h1, ..., hm), if k = m
0, if k > m

.

We will finish this section with some results which we will need in the
sequel. Before that, we need to know that every abelian group G is said to
be n!-divisible group when it is divisible uniquely by n! where n ∈ N∗.
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Theorem 1. [3],[7],[12],[14],[18],[19]
Let G be an abelian group n!-divisible, n ∈ N∗ and f ∈ GS, then the

following assertions are equivalent.

1. 4n
hf(x) = 0, x, h ∈ S.

2. 4h1...hnf(x) = 0, x, h1, ..., hn ∈ S.

3. f is a generalized polynomial function of degree at most n− 1.

Lemma 1. [18] LetG be an abelian group n!-divisible, n ∈N∗, x1, x2, ..., xn ∈
G, then the following properties are fulfilled.

1.
nX

k=1

(−1)n−kCk
nk

i = 0, i ∈ {1, 2, ..., n− 1}, n 6= 1(2.1)

and
nX

k=1

(−1)n−kCk
nk

n = n!.(2.2)

2.

If
Pn

i=1 k
ixi = 0, k ∈ {1, ..., n}, then x1 = x2 = ... = xn = 0.(2.3)

3. Main results

Using the difference operator, we adopt the operatorial approach to charac-
terize the solutions of Drygas equation (1.4) which is not a Jensen equation
or a quadratic equation.
In the remainder of this paper, we denote by S an abelian semigroup and by
G an abelian (κ+1)!-divisible group. However, a solution f of Drygas equa-
tion (1.4) in the semigroup S can be extended to the monoid S ∪ {0} (i.e.
by adding the zero element to S) by setting the value of f to zero. We will
then, f(0) = 1

2κ

P
λ∈Φ f(aλ). Without alter the generality of the problem

studied and if necessary, we will assume that S admit a zero element.

Lemma 2. Let Φ be a finite automorphism group of S, κ = cardΦ, aλ ∈ S
(λ ∈ Φ), A0 ∈ G and Ai ∈ GSi (1 ≤ i ≤ κ) be symmetric and i-additive
mappings such that

p(x) = A0 +
κX
i=1

A∗i (x), x ∈ S(3.1)
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and

Ip(x, y) =
X
λ∈Φ

p(x+ λy + aλ)− κp(x)−
X
λ∈Φ

p(λy), x, y ∈ S.(3.2)

Then we have the following

(a) Ip(0, 0) =
X
λ∈Φ

κX
i=1

Ai(aλ)−κA0

(3.3)
and

(b) Ip(x, y) =

Ip(0, 0)+
P

λ∈Φ
Pκ−1

j=0

Pκ−1
k=0

Pκ
2≤i=maxC

j
iC

k
i−jAi(x, ..., x| {z }

k

, aλ, ..., aλ, λy, ..., λy| {z }
j

),

(3.4)

for all x, y ∈ S, where max = max{j + 1, k + 1, j + k}.

Proof. By direct calculation, we show that

Ip(0, 0) =
X
λ∈Φ

p(aλ)− 2κp(0).

Thus, by replacing p by its expression of Ai, 0 ≤ i ≤ κ we obtain (a). For
every x, y ∈ S, we have

Ip(x, y)

= κA0 +
X
λ∈Φ

Ã
κX
i=1

µ
A∗i (x+ λy + aλ)

¶!
−
X
λ∈Φ

µ
p(x) + p(λy)

¶

=
X
λ∈Φ

⎛⎜⎝ κX
i=1

⎛⎜⎝ iX
j=0

Cj
iAi(x+ aλ, ..., x+ aλ, λy, ..., λy| {z }

j

)

⎞⎟⎠
⎞⎟⎠− κX

i=1

κA∗i (x)

−
X
λ∈Φ

A∗i (λy)− κA0

=
X
λ∈Φ

⎛⎜⎝ κX
i=1

⎛⎜⎝ iX
j=0

Cj
i

i−jX
k=0

Ck
i−jAi(x, ..., x| {z }

k

, aλ, ..., aλ, λy, ..., λy| {z }
j

)

⎞⎟⎠
⎞⎟⎠
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−
κX
i=1

κA∗i (x)

−
X
λ∈Φ

A∗i (λy)− κA0

= Ip(0, 0) +
X
λ∈Φ

κ−1X
j=0

κ−1X
k=0

κX
2≤i=max{j+1,k+1,j+k}

Cj
iC

k
i−j

Ai(x, ..., x| {z }
k

, aλ, ..., aλ, λy, ..., λy| {z }
j

),

from where (b) follows. 2

Lemma 3. Let Φ be a finite automorphism group of S, κ = cardΦ, aλ ∈ S
(λ ∈ Φ), A0 ∈ G and Ai ∈ GSi (1 ≤ i ≤ κ) be symmetric and i-additive
mappings such that

p(x) = A0 +
κX
i=1

A∗i (x), x ∈ S(3.5)

and

Ip(x, y) =
X
λ∈Φ

p(x+ λy + aλ)− κp(x)−
X
λ∈Φ

p(λy), x, y ∈ S.(3.6)

Then the following are equivalent.

1.

Ip(x, y) = 0, x, y ∈ S.(3.7)

2. p is a solution of Eq. (1.4).

3. A0 ∈ G and the mappings Ai, 1 ≤ i ≤ κ, satisfy the following two
equalities,

a) X
λ∈Φ

κX
i=1

A∗i (aλ) = κA0(3.8)

and
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b)

κX
i=max

Cj
iC

k
i−j

X
λ∈Φ

Ai(x, x, ..., x| {z }
k

, aλ, ..., aλ, λy, λy, ..., λy| {z }
j

) = 0, x, y ∈ S,

(3.9)
0 ≤ k ≤ κ − 1, 0 ≤ j ≤ κ− 1, 2 ≤ i = max = max{k + 1, j +
1, j + k} ≤ κ.

Proof. Note first that by Lemma 2 the condition (2) is satisfied if and
only if the condition (1) is satisfied. Suppose that (1) is satisfied, then by
Lemma 2 we obtain (3)(a) and we have:

Ip(x, y) =
X
λ∈Φ

κ−1X
j=0

κ−1X
k=0

κX
2≤i=max(j+1,k+1,j+k)

Cj
iC

k
i−j

Ai(x, ..., x| {z }
k

, aλ, ..., aλ, λy, ..., λy| {z }
j

) = 0,(3.10)

for all x, y ∈ S. To prove (3) we define, for every 0 ≤ j ≤ κ−1, 0 ≤ k ≤ κ−1
the mappings gj , h(k,j) : S × S :→ G by

gj(x, y) =
X
λ∈Φ

κ−1X
k=0

κX
i=j+k

Cj
iC

k
i−jAi(x, ..., x| {z }

k

, aλ, ..., aλ, λy, ..., λy| {z }
j

), x, y ∈ S,

h(k,j)(x, y) =
X
λ∈Φ

κX
1≤i=j+k

Cj
iC

k
i−jAi(x, ..., x| {z }

k

, aλ, ..., aλ, λy, ..., λy| {z }
j

), x, y ∈ S.

Note that,

Ip(x, y) =
κ−1X
j=0

gj(x, y),
κ−1X
k=0

h(k,j)(x, y) = gj(x, y)

and
g0(x, y) = h(0,j)(x, y) = h(k,0)(x, y) = 0, for all x, y ∈ S. However, as

gj(x, ny) = njgj(x, y), n ∈N∗, x, y ∈ S, 0 ≤ j ≤ κ− 1,

we have

κ−1X
j=0

njgj(x, y) =
κ−1X
j=0

gj(x, ny) = 0, n ∈ N∗, x, y ∈ S.
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By Lemma 1, we get

gj(x, y) = 0, x, y ∈ S, 0 ≤ j ≤ κ− 1.

We deduced from the definition of h(k,j) that

h(k,j)(nx, y) = nkh(k,j)(x, y), n ∈N∗, x, y ∈ S, 0 ≤ k ≤ κ−j, 0 ≤ j ≤ κ−1,

and we have

κ−1X
k=0

nkh(k,j)(x, y) =
κ−1X
k=0

h(k,j)(nx, y) = gj(nx, y) = 0, n ∈N∗, x, y ∈ S,

0 ≤ j ≤ κ− 1.
By the same manner as above we obtain

h(k,j)(x, y) = 0, j ∈ {0, ..., κ− 1}, k ∈ {0, ..., κ− 1}.

Thus, Lemma 1 gives the expected result, (3)(b). The converse of this
implication is immediate. This completes the proof. 2

Lemma 4. Let Φ be a finite automorphism group of S, κ = cardΦ, aλ ∈ S
(λ ∈ Φ), and f ∈ GS such thatX

λ∈Φ
f(x+ λy + aλ) = κf(x) +

X
λ∈Φ

f(λy), x, y ∈ S.(3.11)

Then, for every x, y ∈ S, ∆κ
yf(x) is independent of x and we have

∆κ+1
y f(x) = 0, x, y ∈ S.(3.12)

Proof. The proof used here goes along the same lines as the one in [18].
We will denote by Φi,j ⊂ Φ, i ∈ {0, ..., κ}, j ∈ {1, ..., Ci

κ} the Ci
κ pairwise

different sets such that cardΦi,j = κ − i and by g ∈ GS , the application
defined by

g(y) = −
κX
i=0

(−1)κ−i
Ci
κX

j=1

f

⎛⎝ X
λ∈Gi,j

λy

⎞⎠ , y ∈ S.

Let λ ∈ Φ, i ∈ {0, ..., κ} and j ∈ {1, ..., Ci
κ}, then the set λΦij ⊂ Φ has

κ − i elements. So, there is k ∈ {1, ..., Ci
κ} satisfies the following two

equalities
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λΦij = Φi,k and λ−1Φi,k = Φi,j .

It follows,

Ci
κX

j=1

f

⎛⎝ X
µ∈Φi,j

λµy

⎞⎠ = Ci
κX

j=1

f

⎛⎝ X
µ∈Φi,j

µy

⎞⎠ , x ∈ S.(3.13)

For given x, y, we set

ui = x+ iy, vij =
X

µ∈Φi,j
µy, i ∈ {0, ..., κ}, j ∈ {1, ..., Ci

κ}.

Otherwise, let λ ∈ Φ, i ∈ {0, ..., κ} and j ∈ {1, ..., Ci
κ}, then we have

the following two cases:

Case 1. Let λ−1 ∈ Φi,j , then i 6= κ and, Φi,j = Φi+1,j ∪ {λ−1}.
It follows that

ui + λvij = x+ iy +
X

µ∈Φi,j
λµy

= x+ (i+ 1)y +
X

µ∈Φi+1,k
λµy

= ui+1 + λvi+1,k,

for a suitable k in {1, ..., Ci+1
κ }.

Case 2. Let λ−1 ∈ Φi,j , then i 6= 0 and, Φi−1,j = Φi,j ∪ {λ−1}. We can
write,

ui + λvi,j = x+ iy +
X

µ∈Φi,j
λµy

= x+ (i− 1)y +
X

µ∈Φi−1,k
λµy

= ui−1 + λvi−1,k,

for a suitable k in {1, ..., Ci+1
κ }. Taking into account (3.13) and the calcu-

lation results of the previous two cases, we have:
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κ∆κ
yf(x)− κg(y)

= κ
κX
i=0

(−1)κ−iCi
κf(x+ iy) + κ

κ−1X
i=0

(−1)κ−i
Ci
κX

j=1

f

⎛⎝ X
µ∈Φi,j

µy

⎞⎠
= κ

κX
i=0

(−1)κ−iCi
κf(x+ iy+) +

κ−1X
i=0

(−1)κ−i
Ci
κX

j=1

X
λ∈Φ

f

⎛⎝ X
µ∈Φi,j

λµy

⎞⎠
=

κX
i=0

(−1)κ−i
Ci
κX

j=1

µ
κf(ui) +

X
λ∈Φ

f(λvij)

¶

=
κX
i=0

(−1)κ−i
Ci
κX

j=1

X
λ∈Φ

f(ui + λvij + aλ)

= 0, x, y ∈ S.

This shows that for every x, y ∈ S, ∆κ
yf(x) is independent of x and

∆κ
yf(x+ y)−∆κ

yf(x) = 0, x, y ∈ S,

and more accurately
∆κ+1
y f(x) = 0, x, y ∈ S,

from which the desired result follows. 2

Remark 1. Under the assumptions of Lemma 4, if in addition we assume
that X

λ∈Φ
f(λy) = 0, y ∈ S,

then
∆κ
yf(x) = 0, x, y ∈ S.

Theorem 2. Let f ∈ GS , Φ a finite automorphism group of S, κ = cardΦ
and aλ ∈ S (λ ∈ Φ). Then the function f : S → G is a solution of equationX

λ∈Φ
f(x+ λy + aλ) = κf(x) +

X
λ∈Φ

f(λy), x, y ∈ S,(3.14)

if and only if f has the following form

f(x) = A0 +
κX
i=1

A∗i (x), x ∈ S,(3.15)
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where A0 ∈ G and Ak : S
k → G, k ∈ {1, 2, ..., κ} are symmetric and

k-additive functions satisfying the two conditions:

i)
Pκ

i=maxC
j
iC

k
i−j

P
λ∈ΦAi(x, x, ..., x| {z }

k

, aλ, ..., aλ, λy, λy, ..., λy| {z }
j

) = 0, x, y ∈

S,
0 ≤ k ≤ κ− 1, 0 ≤ j ≤ κ− 1, 2 ≤ max = max{j + 1, k + 1, k+ j} ≤
i ≤ κ and

ii)
P

λ∈Φ
Pκ

i=1A∗i (aλ) = κA0.

Proof. The necessary condition is obtained by Lemma 4, Theorem 1 and
Lemma 3. By Lemma 3 we get the sufficient condition which completes the
proof of Theorem. 2

Remark 2. Under the assumptions of Theorem 2, if in addition we assume
that X

λ∈Φ
f(λy) = 0, y ∈ S,

then the result ( with some modifications on the control of indices i, j and
k ) can be obtained by requiring the assumption ”G is κ!-divisible” instead
of ”G is (κ+ 1)!-divisible”.

4. Consequences

The following corollaries are immediate consequences of Theorem 2. On this
occasion, we obtain the following three corollaries 1, 2 and 3 which have
been proved by Sinopoulos [22], Stetkær [25], ÃLukasik [18], Bouikhalene
and Elqorachi [4] respectively.

Corollary 1. [22][25] Let σ : S → S be an involution of S and G be an
abelian group divisible by 2. Then the function f : S → G is a solution of
equation

f(x+ y) + f
³
x+ σ(y)

´
= 2f(x) + f(y) + f

³
σ(y)

´
, x, y ∈ S(4.1)

if and only if f has the following form

f(x) = A1(x) +A∗2(x), x ∈ S,(4.2)

where A1 : S → G is an arbitrary additive function and A2 : S × S → G is

an arbitrary symmetric biadditive function with A2(x, y) +A2
³
x, σ(y)

´
=

0, x, y ∈ S.



A generalization of Drygas functional equation 171

Corollary 2. [18] Let S be an abelian semigroup, G be an abelian group
divisible by κ!, Φ be a finite automorphism group of S with order κ. Then
the function f : S → G is a solution of equationX

λ∈Φ
f(x+ λy) = κf(x) +

X
λ∈Φ

f(λy), x, y ∈ S,(4.3)

if and only if f has the following form

f(x) =
κX
i=1

A∗i (x), x ∈ S,(4.4)

where Ak : S
k → G, k ∈ {1, 2, ..., κ} are arbiyrary symmetric and k-

additive functions which satisfy the following condition:P
λ∈ΦAi(x, x, ..., x, λy, λy, ..., λy| {z }

j

) = 0, x, y ∈ S, 1 ≤ j ≤ i − 1, 2 ≤

i ≤ κ.

Proof. In this case, with the notations of Theorem 2, as {aλ, λ ∈ Φ} =
{0}, k + j = i.

Furthermore, we can write that

0 =
X

i=max(k+j,k+1)

Ck
i C

i−j
j

X
λ∈Φ

Aik(x, ..., x| {z }, aλ, ..., aλ, jλy, ..., λy| {z })
=

κX
i=k+j

Ck
i

X
λ∈Φ

Aik(x, ..., x| {z }, jλy, ..., λy| {z })
=

i−1X
j=1

Ck
i

X
λ∈Φ

Ai(x, ..., x, jλy, ..., λy| {z }), x, y ∈ S, 2 ≤ i ≤ κ.

For 1 ≤ j ≤ i− 1, 2 ≤ i ≤ κ, we define the mappings q(j,i) : S × S → G by

q(j,i)(x, y) = Cj
i

X
λ∈Φ

Ai(x, ..., x, jλy, λy, ..., λy| {z }) x, y ∈ S.

So, we have

q(j,i)(x, ny) = njq(j,i)(x, y), x, y ∈ S, n ∈N∗, 0 ≤ j ≤ i− 1, 2 ≤ i ≤ κ

and
κX

j=1

njq(j,i)(x, y) =
κX

j=1

q(j,i)(x, ny) = 0, x, y ∈ S, 2 ≤ i ≤ κ.

According to Lemma1 we get the sought result. 2
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Corollary 3. [4] Let S be an abelian group, G be a Banach space and
a ∈ S. Then, the general solution f : S → G of the functional equation

f(x+ y + a) = f(x) + f(y), x, y ∈ S,(4.5)

is

f(x) = A1(a) +A1(x), x ∈ S.(4.6)

where A1 : S → G is an arbitrary additive function.

In the following corollaries we prove new others special cases of the
equation 1.4 that is, according to our knowledge, not in the literature.

Corollary 4. Let S be an abelian semigroup, G be an abelian group di-
visible by 2 and a, b ∈ S. Then, the general solution f : S → G of the
functional equation

f(x+ y + a) + f(x− y + b) = 2f(x) + f(y) + f(−y), x, y ∈ S,(4.7)

is

f(x) =
1

2

³
A1(a+ b)

´
+A1(x) +A∗2(x), x ∈ S(4.8)

where A1 : S → G is an arbitrary additive function and A2 : S × S → G
is an arbitrary symmetric biadditive function with A2(x, a) = A2(x, b) =
0, x ∈ S.

Corollary 5. Let S be an abelian semigroup, σ be an involution of S, G
be an abelian group divisible by 2 and a, b ∈ S. Then, the general solution
f : S → G of the functional equation

f(x+ y + a) + f
³
x+ σ(y) + b

´
= 2f(x) + f(y) + f

³
σ(y)

´
, x, y ∈ S,(4.9)

is

f(x) =
1

2

³
A1(a+ b)

´
+A1(x) +A∗2(x), x ∈ S,(4.10)

where A1 : S → G is an arbitrary additive function and A2 : S × S → G is
an arbitrary symmetric biadditive function with

A2(x, a) = A2(x, b) = 0, x ∈ S and A2(x, y) +A2
³
x, σ(y)

´
= 0, x, y ∈ S.
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Proof. Keeping in mind the notation of Theorem 2, we apply it where
κ = 2. Then there are an element A0 ∈ G and symmetric i-additives
mappings Ai ∈ GSi , i ∈ {1, 2} satisfy

1. f(x) = A0 +A1(x) +A∗2(x), x ∈ S
on the other side, they satisfy the following conditions of Theorem 2
:

2. i) k = 0, j = 1, A2(a, y) +A2(b, σ(y)) = 0, y ∈ S,

ii) k = 1, j = 0, A2(y, a) +A2(y, b) = 0, y ∈ S,

iii) k = 1, j = 1, A2(x, y) +A2(x, σ(y)) = 0, x, y ∈ S.

Thus, A2(y, a) = A2(y, b) = 0, y ∈ S; A2(x, y) +A2(x, σ(y)) = 0, x, y ∈ S
and 2A0 = A1(a+ b). 2

Corollary 6. Let j be a primitive cube root of unity and a be complex
number. Then, the general continuous solution f : C→ C of the functional
equation

f(x+y+ja)+f(x+jy+j2a)+f(x+j2y+a) = 3f(x)+f(y)+f(jy)+f(j2y), x, y ∈ C,
(4.11)
is of the form

f(x) = α1x+ β1x+ α2x
2 + β2x

2,(4.12)

where α1, β1, α2, β2 ∈ C.

Proof. According the Theorem 2, there are α0 ∈ C, and symmetric
i-additive mappings Ai : C

i → C, i ∈ {1, 2, 3} such that

f(z) = α0 +A1(z) +A∗2(z) +A∗3(z), z ∈ C.

Taking into account that j is a primitive cube root of unity, we have
1+ j + j2 = 0. In addition, the continuity of f show that A1,A2 et A3 can
be written as the following

A1(z) = α1z + β1z, α1, α2 ∈ C,
A∗2(z) = α2z

2 + β2z
2 + β3|z|2, α2, β2, β3 ∈ C,

A∗3(z) = γ1z
3 + γ2z

3, γ1, γ2 ∈ C.
So the conditions of Theorem 2 do not satisfy where γ1 = γ2 = β3 = 0

which finish the proof. 2
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