Proyecciones Journal of Mathematics
Vol. 35, $\mathrm{N}^{o} 3$, pp. 277-289, September 2016.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172016000300005

One modulo three mean labeling of transformed trees

P. Jeyanthi
Govindammal Aditanar College for Women, India
A. Maheswari
Kamaraj College of Engineering and Technology, India
and
P. Pandiaraj
Kamaraj College of Engineering and Technology, India
Received: December 2015. Accepted: February 2016

Abstract

A graph G is said to be one modulo three mean graph if there is an injective function ϕ from the vertex set of G to the set $\{a \mid 0 \leq a \leq 3 q-$ 2 and either $a \equiv 0(\bmod 3)$ or $a \equiv 1(\bmod 3)\}$ where q is the number of edges G and ϕ induces a bijection ϕ^{*} from the edge set of G to $\{a \mid 1 \leq$ $a \leq 3 q-2$ and either $a \equiv 1(\bmod 3)\}$ given by $\phi^{*}(u v)=\left\lceil\frac{\phi(u)+\phi(v)}{2}\right\rceil$ and the function ϕ is called one modulo three mean labeling of G. In this paper, we prove that the graphs $T \odot \overline{K_{n}}, T \hat{o} K_{1, n}, T \hat{o} P_{n}$ and $T \hat{o} 2 P_{n}$ are one modulo three mean graphs.

Keywords : Mean labeling, one modulo three graceful labeling, one modulo three mean labeling, one modulo three mean graphs, transformed tree.

AMS Subject Classification : 05C78.

1. Introduction

All graphs considered here are simple, finite, connected and undirected. For a detailed survey of graph labeling we refer to [1]. We follow the basic notations and terminology of graph theory as in Harary [2]. The notion of mean labeling was due to Somasundaram and Ponraj [7]. A graph $G=(V, E)$ with p vertices and q edges is called a mean graph if f : $V(G) \rightarrow\{0,1,2,3, \ldots q\}$ be an injection. For each edge $e=u v$, let $f^{*}(e)=$ $\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$. Then the resulting edge labels are distinct. The concept of one modulo three graceful labeling was introduced by Swaminathan and Sekar in [8]. A graph $G=(V, E)$ with p vertices and q edges is called an one modulo three graceful if there is a function ϕ from the vertex set of G to $\{0,1,3,4, \ldots, 3 q-2\}$ in such a way that (i) ϕ is one-one (ii) ϕ induces a bijection ϕ^{*} from the edge set or $f G$ to $\{1,4,7, \ldots, 3 q-2\}$ where $\phi^{*}(u v)=$ $|\phi(u)-\phi(v)|$. Motivated by the work of the authors in [7, 8] Jeyanthi and Maheswari defined one modulo three mean labeling in [4] and proved that $P_{2 n}$, comb, bistar $B_{n, n}, T_{p}$-tree with even number of vertices, $C_{4 n+1}$, ladder $L_{n+1}, K_{1,2 n} \times K_{2}$ are one modulo three mean graphs. Furthermore, they proved that $B_{m, n}, K_{1, n}, K_{n}, n>3$ are not one modulo three mean graphs. In $[5,6]$ it is proved that $D A\left(Q_{n}\right), D A\left(Q_{2}\right) \odot n K_{1}, D A\left(Q_{m}\right) \odot n K_{1}, D A\left(T_{2}\right) \odot$ $n K_{1}, D A\left(T_{m}\right) \odot n K_{1}, \bar{S}\left(D A\left(T_{n}\right)\right), \bar{S}\left(D A\left(Q_{n}\right)\right), D\left(C_{n}, v^{\prime}\right)$, $D\left(C_{n}, e^{\prime}\right), S^{\prime}\left(P_{2 n}\right), N A\left(Q_{m}\right), K_{1,2 n} \times P_{2}, E J_{n}, m P_{n}, m \geq 1, C_{m} * e C_{n}(m, n \equiv$ $1(\bmod 4))$ and $P_{4 m}(+) \overline{K_{n}}$ graphs are one modulo three mean graphs. In this paper we extend the study on one modulo three mean labeling and prove that graphs $T \odot \overline{K_{n}}, T \hat{o} K_{1, n}, T \hat{o} P_{n}$ and $T \hat{o} 2 P_{n}$ are one modulo three mean graphs. We use the following definitions in the subsequent section.

Definition 1.1. The corona $G_{1} \odot G_{2}$ of the graphs G_{1} and G_{2} is defined as a graph obtained by taking one copy of G_{1} (with p vertices) and p copies of G_{2} and then joining the $i^{\text {th }}$ vertex of G_{1} to every vertex of the $i^{\text {th }}$ copy of G_{2}.

Definition 1.2. Let G_{1} be a graph with p vertices and G_{2} be any graph. A graph $G_{1} \hat{o} G_{2}$ is obtained from G_{1} and p copies of G_{2} by identifying one vertex of $i^{\text {th }}$ copy of G_{2} with $i^{\text {th }}$ vertex of G_{1}.

Definition 1.3. [3] Let T be a tree and u_{0} and v_{0} be the two adjacent vertices in T. Let u and v be the two pendant vertices of T such that the length of the path $u_{0}-u$ is equal to the length of the path $v_{0}-v$. If the edge $u_{0} v_{0}$ is deleted from T and u and v are joined by an edge $u v$, then such a
transformation of T is called an elementary parallel transformation (or an ept) and the edge $u_{0} v_{0}$ is called transformable edge. If by the sequence of ept's, T can be reduced to a path, then T is called a T_{p}-tree (transformed tree) and such sequence regarded as a composition of mappings (ept's) denoted by P is called a parallel transformation of T. The path, the image of T under P is denoted as $P(T)$. A T_{P}-tree and the sequence of two ept's reducing it to a path are illustrated in the following figure.

2. Main Results

Theorem 2.1. Let T be a T_{p}-tree with even number of vertices. Then the graph $T \odot \overline{K_{n}}$ is a one modulo three mean graph for all $n \geq 1$.

Proof. Let T be a T_{P}-tree with m vertices where m is even. By the definition of T_{p}-tree, there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ (ii) $E(P(T))=(E(T)-$ $\left.E_{d}\right) \cup E_{p}$ where E_{d} is the set of edges deleted from T and E_{p} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the epts P used to arrive the path $P(T)$. Clearly, E_{d} and E_{p} have the same number of edges.

Now, we denote the vertices of $P(T)$ successively as $u_{1}, u_{2}, \ldots, u_{m}$ starting from one pendant vertex of $P(T)$ right up to the other. Hence the vertex set $V(T)=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ and the edge set $E(T)=\left\{e_{i}=u_{i} u_{i+1}\right.$: $1 \leq i \leq m-1\}$. Let $u_{i 1}, u_{i 2}, \ldots, u_{i n}$ be the pendant vertices joined with $u_{i}(1 \leq i \leq m)$ by an edge. Then, $V\left(T \odot K_{n}\right)=\left\{u_{i}, u_{i j}: 1 \leq i \leq m, 1 \leq\right.$ $j \leq n\}$ and $E\left(T \odot K_{n}\right)=\left\{e_{i}=u_{i} u_{i+1}: 1 \leq i \leq m-1\right\} \cup\left\{e_{j}^{i}=u_{i} u_{i j}: 1 \leq\right.$
$i \leq m, 1 \leq j \leq n\}$. The graph $T \odot \overline{K_{n}}$ has $m n+m$ vertices $m n+m-1$ edges.

Define a vertex labeling $\phi: V\left(T \odot \overline{K_{n}}\right) \rightarrow\{0,1,3, \ldots, 3 m n+3 m-5\}$ as follows:

For $1 \leq i \leq m, 1 \leq j \leq n \quad \phi\left(u_{i}\right)= \begin{cases}3(n+1)(i-1) & \text { if } i \text { is odd } \\ 3(n+1) i-5 & \text { if } i \text { is even, }\end{cases}$
$\phi\left(u_{i j}\right)= \begin{cases}3(n+1)(i-1)+6 j-5 & \text { if } i \text { is odd } \\ 3(n+1)(i-2)+6 j & \text { if } i \text { is even. }\end{cases}$
For the vertex labeling ϕ, the induced edge labeling ϕ^{*} is as follows: $\phi^{*}\left(e_{j}^{i}\right)=3(n+1)(i-1)+3 j-2$ for $1 \leq i \leq m, 1 \leq j \leq n$ and $\phi^{*}\left(e_{i}\right)=3(n+1) i-2$ for $1 \leq i \leq m-1$.

Let $u_{i} u_{j}$ be an edge of T for some indices i and $j, 1 \leq i<j \leq m$. Let P_{1} be the ept that deletes this edge and adds an edge $u_{i+t} u_{j-t}$ where t is the distance of u_{i} from u_{i+t} and also the distance of u_{j} from u_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent epts. Since $u_{i+t} u_{j-t}$ is an edge in the path $P(T)$, it follows that $i+t+1=j-t$ which implies $j=i+2 t+1$. Therefore, i and j are of opposite parity. The induced label of the edge $u_{i} u_{j}$ is given by

$$
\begin{aligned}
& \quad \phi^{*}\left(u_{i} u_{j}\right)=\phi^{*}\left(u_{i} u_{i+2 t+1}\right)=\left\lceil\frac{\phi\left(u_{i}\right)+\phi\left(u_{i+2 t+1}\right)}{2}\right\rceil \\
& =3(n+1)(i+t)-2,1 \leq i \leq m . \\
& \phi^{*}\left(u_{i+t} u_{j-t}\right)=\phi^{*}\left(u_{i+t} u_{i+t+1}\right)=\left\lceil\frac{\phi\left(u_{i+t}\right)+\phi\left(u_{i+t+1}\right)}{2}\right\rceil \\
& =3(n+1)(i+t)-2,1 \leq i \leq m .
\end{aligned}
$$

Therefore, we have $\phi^{*}\left(u_{i} u_{j}\right)=\phi^{*}\left(u_{i+t} u_{j-t}\right)$.
It can be verified that the induced edge labels of $T \odot \overline{K_{n}}$ are $1,4,7, \ldots$, $3 m n+3 m-5$. Hence, $T \odot \overline{K_{n}}$ is a one modulo three mean graph for all $n \geq 1$.

An example for one modulo three mean labeling of $T \odot \overline{K_{4}}$ where T is a T_{p}-tree with 10 vertices is given in Figure 2.

Figure 2
Theorem 2.2. Let T be a T_{p}-tree with even number of vertices. Then the graph $T \hat{o} K_{1, n}$ is a one modulo three mean graph.

Proof. Let T be a T_{p}-tree with m vertices where m is even. By the definition of transformed tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ (ii) $E(P(T))=$ $\left(E(T)-E_{d}\right) \cup E_{p}$ where E_{d} is the set of edges deleted from T and E_{p} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the epts P used to arrive at the path $P(T)$. Clearly, E_{d} and E_{p} have the same number of edges.

Now, we denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, \ldots, v_{m}$ starting from one pendant vertex of $P(T)$ right up to the other. Hence, the vertex set $V(T)=\left\{v_{1}, v_{2} \ldots, v_{m}\right\}$ and the edge set $E(T)=\left\{e_{i}=v_{i} v_{i+1}\right.$: $1 \leq i \leq m-1\}$. Let $u_{0}^{j}, u_{1}^{j}, u_{2}^{j}, \ldots, u_{n}^{j}(1 \leq j \leq m)$ be the vertices of $i^{\text {th }}$ copy of $K_{1, n}$ with $u_{n}^{j}=v_{j}$. Then $V\left(T \hat{o} K_{1, n}\right)=\left\{u_{i}^{j}: 0 \leq i \leq n, 1 \leq j \leq m\right\}$ and $E\left(T \hat{o} K_{1, n}\right)=\left\{e_{i}=v_{i} v_{i+1}: 1 \leq i \leq m-1, e_{i}^{\prime}=v_{i} u_{0}^{i}: 1 \leq i \leq m\right\} \cup\left\{e_{j}^{i}=\right.$
$\left.u_{0}^{i} u_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$. The graph $T \hat{o} K_{1, n}$ has $m n+m$ vertices and $m n+m-1$ edges.

Define a vertex labeling $\phi: V\left(T \hat{o} K_{1, n}\right) \rightarrow\{0,1,3, \ldots, 3 m n+3 m-5\}$ as follows:

For $1 \leq i \leq m \quad \phi\left(v_{i}\right)= \begin{cases}3(n+1)(i-1) & \text { if } i \text { is odd } \\ 3(n+1) i-5 & \text { if } i \text { is even, }\end{cases}$ $\phi\left(u_{0}^{j}\right)= \begin{cases}3(n+1)(j-1)+1 & \text { if } j \text { is odd, } 1 \leq j \leq m \\ 3(n+1) j-6 & \text { if } j \text { is even, } 1 \leq j \leq m,\end{cases}$ $\phi\left(u_{i}^{j}\right)= \begin{cases}3(n+1)(j-1)+6 i & \text { if } j \text { is odd, } 1 \leq j \leq m, 1 \leq i \leq n-1 \\ 3(n+1)(j-2)+6 i+1 & \text { if } j \text { is even, } 1 \leq j \leq m, 1 \leq i \leq n-1 .\end{cases}$ For the vertex labeling ϕ, the induced edge labeling ϕ^{*} is as follows:

For $1 \leq i \leq m, 1 \leq j \leq n \phi^{*}\left(e_{j}^{i}\right)= \begin{cases}3(n+1)(i-1)+3 j+1 & \text { if } i \text { is odd } \\ 3(n+1)(i-1)+3 j-2 & \text { if } i \text { is even, }\end{cases}$ $\phi^{*}\left(e_{i}^{\prime}\right)=\left\{\begin{array}{ll}3(n+1)(i-1)+1 & \text { if } i \text { is odd } \\ 3(n+1) i-5 & \text { if } i \text { is even }\end{array}\right.$ and $\phi^{*}\left(e_{i}\right)=3(n+1) i-2$ if $1 \leq i \leq m-1$.

Let $v_{i} v_{j}$ be a transformed edge in T for some indices i and $j, 1 \leq i<$ $j \leq m$. Let P_{1} be the ept that deletes the edge $v_{i} v_{j}$ and adds an edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent epts.

Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T)$, it follows that $i+t+1=j-t$ which implies $j=i+2 t+1$. Therefore, i and j are of opposite parity. The induced label of the edge $v_{i} v_{j}$ is given by

$$
\begin{aligned}
& \phi^{*}\left(v_{i} v_{j}\right)=\phi^{*}\left(v_{i} v_{i+2 t+1}\right)=\left\lceil\frac{\phi\left(v_{i}\right)+\phi\left(v_{i+2 t+1}\right)}{2}\right\rceil \\
&=3(n+1)(i+t)-2,1 \leq i \leq m \text { and } \\
& \phi^{*}\left(v_{i+t} v_{j-t}\right)=\phi^{*}\left(v_{i+t} v_{i+t+1}\right)=\left\lceil\frac{\phi\left(v_{i+t}+\phi\left(v_{i+t+1}\right)\right.}{2}\right\rceil \\
&=3(n+1)(i+t)-2,1 \leq i \leq m
\end{aligned}
$$

Therefore $\phi^{*}\left(v_{i} v_{j}\right)=\phi^{*}\left(v_{i+t} v_{j-t}\right)$.
It can be verified that the induced edge labels of $T \hat{o} K_{1, n}$ are $1,4,7, \ldots$, $3 m n+3 m-5$. Hence, $T \hat{o} K_{1, n}$ is a one modulo three mean graph.

An example for one modulo three mean labeling of $T \hat{o} K_{1,4}$ where T is a T_{p}-tree with 12 vertices is given in Figure 3.

Figure 3

Theorem 2.3. If T be a T_{p}-tree with even number of vertices, then the graph $T o P_{n}$ is a one modulo three mean graph.

Proof. Let T be a T_{p}-tree with m vertices. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ (ii) $E(P(T))=\left(E(T)-E_{d}\right) \cup$ E_{p} where E_{d} is the set of edges deleted from T and E_{p} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the epts P used to arrive at the path $P(T)$. Clearly, E_{d} and E_{p} have the same number of edges.

Now, denote the vertices of $P(T)$ successively by $v_{1}, v_{2}, \ldots, v_{m}$ starting from one pendant vertex of $P(T)$ right up to the other one. Then the vertex set $V(T)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and the edge set $E(T)=\left\{e_{i}=v_{i} v_{i+1}\right.$: $1 \leq i \leq m-1\}$. Let $u_{1}^{j}, u_{2}^{j}, \ldots, u_{n}^{j}(1 \leq j \leq n)$ be the vertices of $j^{\text {th }}$ copy of P_{n}. Then $V\left(T \hat{o} P_{n}\right)=\left\{u_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right.$ with $\left.u_{n}^{j}=v_{j}\right\}$ and $E\left(T \hat{o} P_{n}\right)=\left\{e_{i}=v_{i} v_{i+1}: 1 \leq i \leq m-1\right\} \cup\left\{e_{j}^{i}=u_{i}^{j} u_{i+1}^{j}: 1 \leq j \leq m, 1 \leq\right.$ $i \leq n-1\}$. The graph $T o ̂ P_{n}$ has $m n$ vertices and $m n-1$ edges.

Define a vertex labeling $\phi: V\left(T \hat{o} P_{n}\right) \rightarrow\{0,1,3, \ldots, 3 m n-5\}$ as follows:
For $1 \leq i \leq m, 1 \leq j \leq n$.

When j is odd, $\phi\left(u_{i}^{j}\right)= \begin{cases}3(i-1)+3 n(j-1) & \text { if } i \text { is odd } \\ 3(i-2)+3 n(j-1)+1 & \text { if } i \text { is even. }\end{cases}$

When j is even, $\phi\left(u_{i}^{j}\right)= \begin{cases}3(n j-i)-2 & \text { if } i \text { is odd } \\ 3(n j-i) & \text { if } i \text { is even. }\end{cases}$

For the vertex labeling ϕ, the induced edge labeling ϕ^{*} is as follows:

For $1 \leq i \leq n-1,1 \leq j \leq m \phi^{*}\left(e_{i}^{j}\right)= \begin{cases}3 n(j-1)+3 i-2 & \text { if } j \text { is odd } \\ 3 n j-3 i-2 & \text { if } j \text { is even. }\end{cases}$

For $1 \leq j \leq m-1 \phi^{*}\left(e_{j}\right)= \begin{cases}3 n(j-1)+3 n-2 & \text { if } j \text { is odd } \\ 3 n j-2 & \text { if } j \text { is even. }\end{cases}$

Let $v_{i} v_{j}$ be a transformed edge in T for some indices $i, j, 1 \leq i<j \leq m$. Let P_{1} be the ept that deletes the edge $v_{i} v_{j}$ and adds an edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent epts.

Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T)$, it follows that $i+t+1=j-t$ which implies $j=i+2 t+1$. Therefore, i and j are of opposite parity, that is, i is odd and j is even or vice-versa.

The induced label of the edge $v_{i} v_{j}$ is given by $\phi^{*}\left(v_{i} v_{j}\right)=\phi^{*}\left(v_{i} v_{i+2 t+1}\right)=$ $\left\lceil\frac{\phi\left(v_{i}\right)+\phi\left(v_{i+2 t+1}\right)}{2}\right\rceil$
$=3 n(i+t)-2,1 \leq i \leq m$ and
$\phi^{*}\left(v_{i+t} v_{j-t}\right)=\phi^{*}\left(v_{i+t} v_{i+t+1}\right)=\left\lceil\frac{\phi\left(v_{i+t}\right)+\phi\left(v_{i+t+1}\right)}{2}\right\rceil$
$=3 n(i+t)-2,1 \leq i \leq m$. Therefore, $\phi^{*}\left(v_{i} v_{j}\right)=\phi^{*}\left(v_{i+t} v_{j-t}\right)$. Let $e_{i}^{j}=u_{i}^{j} u_{i+1}^{j}(1 \leq i \leq n-1,1 \leq j \leq m), e_{j}=v_{j} v_{j+1}(1 \leq j \leq m-1)$ be the edges of $T o ̂ P_{n}$.

It can be verified that the induced edge labels of $T \hat{o} P_{n}$ are $1,4,7, \ldots$, $3 m n-5$. Hence, $T \hat{o} P_{n}$ is a one modulo three mean graph.

An example for one modulo three mean labeling of $T \hat{o} P_{5}$ where T is a T_{p}-tree with 10 vertices is given in Figure 4.

Figure 4

Theorem 2.4. If T be a T_{p}-tree with even number of vertices, then the graph $T \hat{o} 2 P_{n}$ is a one modulo three mean graph.

Proof. Let T be a T_{p}-tree with m vertices where m is even. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ (ii) $E(P(T))=$ $\left(E(T)-E_{d}\right) \cup E_{p}$ where E_{d} is the set of edges deleted from T and E_{p} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the epts P used to arrive at the path $P(T)$. Clearly, E_{d} and E_{p} have the same number of edges.

Now, denote the vertices of $P(T)$ successively by $v_{1}, v_{2}, \ldots, v_{m}$ starting from one pendant vertex of $P(T)$ right up to the other. Then the vertex set $V(T)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and the edge set $E(T)=\left\{e_{i}=v_{i} v_{i+1}: 1 \leq i \leq\right.$ $m-1\}$. Let $u_{1,1}^{j}, u_{1,2}^{j}, \ldots, u_{1, n}^{j}$ and $u_{2,1}^{j}, u_{2,2}^{j}, \ldots, u_{2, n}^{j}(1 \leq j \leq m)$ be the vertices of the two vertex disjoint paths joined by the $j^{\text {th }}$ vertex of T such that $v_{j}=u_{1, n}^{j}=u_{2, n}^{j}$. Then $V\left(T \hat{o} 2 P_{n}\right)=\left\{v_{j}, u_{1, t}^{j}, u_{2, t}^{j}:: 1 \leq i \leq n, 1 \leq\right.$ $j \leq m$ with $\left.u_{1, n}^{j}=u_{2, n}^{j}=v_{j}\right\}$ and $E\left(T o \hat{o} 2 P_{n}\right)=\left\{e_{1, i}^{j}=u_{1, i}^{j} u_{1, i+1}^{j}, e_{2, i}^{j}=\right.$
$\left.u_{2, i}^{j}, u_{2, i+1}^{j}: 1 \leq i \leq n-1,1 \leq j \leq m\right\} \cup\left\{e_{j}=v_{j} v_{j+1}: 1 \leq j \leq m-1\right\}$. The graph $T \hat{o} 2 P_{n}$ has $2 m n-m$ vertices and $m(2 n-1)-1$ edges.

Define a vertex labeling $\phi: V\left(T \hat{o} P_{n}\right) \rightarrow\{0,1,3, \ldots, 6 m n-3 m-5\}$ as follows: For $1 \leq i \leq m, 1 \leq j \leq n$.

When j is odd, $\phi\left(u_{1, i}^{j}\right)= \begin{cases}3(i-1)+3(j-1)(n+2) & \text { if } i \text { is odd } \\ 3(i-2)+3(j-1)(n+2)+1 & \text { if } i \text { is even }\end{cases}$ $\phi\left(u_{2, i}^{j}\right)= \begin{cases}3(2 n-1) j-3 i & \text { if } i \text { is odd } \\ 3(2 n-1) j-3 i-2 & \text { if } i \text { is even. }\end{cases}$

When j is even, $\phi\left(u_{1, i}^{j}\right)= \begin{cases}3(2 n-1) j-6 n+3 i-2 & \text { if } i \text { is odd } \\ 3(2 n-1) j-6 n+3 i & \text { if } i \text { is even, }\end{cases}$ $\phi\left(u_{2, i}^{j}\right)= \begin{cases}3(2 n-1) j-3 i-2 & \text { if } i \text { is odd } \\ 3(2 n-1) j-3 i & \text { if } i \text { is even. }\end{cases}$

For the vertex labeling ϕ, the induced edge labeling ϕ^{*} is as follows:
For $1 \leq i \leq n-1,1 \leq j \leq m \phi^{*}\left(e_{1, i}^{j}\right)=3(2 n-1)(j-1)+3 i-2, \phi^{*}\left(e_{2, i}^{j}\right)=$ $3(2 n-1) j-3 i-3 n+10$ and $\phi^{*}\left(e_{j}\right)=3(2 n-1) j-2$ if $1 \leq j \leq m-1$.

Let $v_{i} v_{j}$ be the transformed edge in T for some indices $i, j, 1 \leq i<j \leq m$ and let P_{1} be the ept that deletes the edge $v_{i} v_{j}$ and adds the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent epts.

Since, $v_{i+t} v_{j-t}$ is an edge in the path $P(T)$, it follows that $i+t+1=j-t$ which implies $j=i+2 t+1$. Therefore, i and j are of opposite parity, that is, i is odd and j is even or vice-versa.

The induced label of the edge $v_{i} v_{j}$ is given by $\phi^{*}\left(v_{i} v_{j}\right)=\phi^{*}\left(v_{i} v_{i+2 t+1}\right)=$ $\left\lceil\frac{\phi\left(v_{i}\right)+\phi\left(v_{i+2 t+1}\right)}{2}\right\rceil$
$=3(2 n-1)(i+t)-2,1 \leq i \leq m$ and
$\phi^{*}\left(v_{i+t} v_{j-t}\right)=\phi^{*}\left(v_{i+t} v_{i+t+1}\right)=\left\lceil\frac{\phi\left(v_{i+t}\right)+\phi\left(v_{i+t+1}\right)}{2}\right\rceil$
$=3(2 n-1)(i+t)-2,1 \leq i \leq m$. Therefore, $\phi^{*}\left(v_{i} v_{j}\right)=\phi^{*}\left(v_{i+t} v_{j-t}\right)$. Let be the edges of $T \hat{o} 2 P_{n}$.

It can be verified that the induced edge labels of $T \hat{o} 2 P_{n}$ are $1,4,7, \ldots$, $6 m n-3 m-5$. Hence, $T \hat{o} 2 P_{n}$ is a one modulo three mean graph.

An example for one modulo three mean labeling of $T \hat{o} 2 P_{4}$ where T is a T_{p}-tree with 10 vertices is given in Figure 5.

Figure 5

3. Conclusion

The concept of one modulo three mean labeling was introduced in [4]. In this paper we extend the study on one modulo three mean labeling and prove that graphs $T \odot \overline{K_{n}}, T \hat{o} K_{1, n}, T \hat{o} P_{n}$ and $T \hat{o} 2 P_{n}$ are one modulo three mean graphs.

Acknowledgement

The authors sincerely thank the referee for his valuable comments to improve the presentation of the paper to a larger extent.

References

[1] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17, \#DS6, (2015).
[2] F. Harary, Graph Theory, Addison Wesley, Massachusetts, 1972.
[3] S. M. Hegde, and Sudhakar Shetty,On Graceful Trees, Applied Mathematics E- Notes, 2, pp. 192-197, (2002).
[4] P. Jeyanthi and A. Maheswari, One modulo three mean labeling of graphs, American Journal of Applied Mathematics and Statistics, 2(5), pp. 302-306, (2014).
[5] P. Jeyanthi, A. Maheswari and P. Pandiaraj, One Modulo Three Mean Labeling of Cycle Related Graphs, International Journal of Pure and Applied Mathematics, 103(4), pp. 625-633, (2015).
[6] P. Jeyanthi, A. Maheswari and P. Pandiaraj, On one modulo three mean labeling of graphs, Journal of Discrete Mathematical Science \mathcal{E} Cryptography, 19:2, pp. 375-384, (2016).
[7] S. Somasundaram, and R.Ponraj, Mean labeling of graphs, National Academy Science Letters, 26, pp. 210-213, (2003).
[8] V. Swaminathan and C. Sekar, Modulo three graceful graphs, Proceed. National Conference on Mathematical and Computational Models, PSG College of Technology, Coimbatore, pp. 281-286, (2001).

P. Jeyanthi

Research Centre
Department of Mathematics
Govindammal Aditanar College for Women
Tiruchendur-628 215, Tamilnadu, India
e-mail: jeyajeyanthi@rediffmail.com

A. Maheswari

Department of Mathematics
Kamaraj College of Engineering and Technology
Virudhunagar, Tamilnadu,
India
e-mail: ttfamily bala_nithin@yahoo.co.in
and
P. Pandiaraj

Department of Mathematics
Kamaraj College of Engineering and Technology
Virudhunagar, Tamilnadu,
India
e-mail : pandiaraj0@gmail.com

