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Universidad Católica del Norte
Antofagasta - Chile

Abstract

A graph G is said to be one modulo three mean graph if there is an
injective function φ from the vertex set of G to the set {a|0 ≤ a ≤ 3q−
2 and either a ≡ 0(mod 3) or a ≡ 1(mod 3)} where q is the number of
edges G and φ induces a bijection φ∗ from the edge set of G to {a|1 ≤
a ≤ 3q − 2 and either a ≡ 1(mod 3)} given by φ∗(uv) =

l
φ(u)+φ(v)

2

m
and the function φ is called one modulo three mean labeling of G. In
this paper, we prove that the graphs T¯Kn, T ôK1,n, T ôPn and T ô2Pn
are one modulo three mean graphs.
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1. Introduction

All graphs considered here are simple, finite, connected and undirected.
For a detailed survey of graph labeling we refer to [1]. We follow the
basic notations and terminology of graph theory as in Harary [2]. The
notion of mean labeling was due to Somasundaram and Ponraj [7]. A
graph G = (V,E) with p vertices and q edges is called a mean graph if f :
V (G)→ {0, 1, 2, 3, . . . q} be an injection. For each edge e = uv, let f∗(e) =l
f(u)+f(v)

2

m
. Then the resulting edge labels are distinct. The concept of one

modulo three graceful labeling was introduced by Swaminathan and Sekar
in [8]. A graph G = (V,E) with p vertices and q edges is called an one
modulo three graceful if there is a function φ from the vertex set of G to
{0, 1, 3, 4, . . . , 3q − 2} in such a way that (i) φ is one-one (ii) φ induces a
bijection φ∗ from the edge set or fG to {1, 4, 7, . . . , 3q−2} where φ∗(uv) =
|φ(u)− φ(v)|. Motivated by the work of the authors in [7, 8] Jeyanthi and
Maheswari defined one modulo three mean labeling in [4] and proved that
P2n, comb, bistar Bn,n, Tp-tree with even number of vertices, C4n+1, ladder
Ln+1, K1,2n ×K2 are one modulo three mean graphs. Furthermore, they
proved that Bm,n,K1,n,Kn, n > 3 are not one modulo three mean graphs.
In [5, 6] it is proved thatDA(Qn),DA(Q2)¯nK1,DA(Qm)¯nK1,DA(T2)¯
nK1,DA(Tm)¯ nK1, S(DA(Tn)), S(DA(Qn)),D(Cn, v

0),
D(Cn, e

0), S0(P2n), NA(Qm),K1,2n×P2, EJn,mPn,m ≥ 1, Cm∗eCn(m,n ≡
1(mod 4)) and P4m(+)Kn graphs are one modulo three mean graphs. In
this paper we extend the study on one modulo three mean labeling and
prove that graphs T ¯Kn, T ôK1,n, T ôPn and T ô2Pn are one modulo three
mean graphs. We use the following definitions in the subsequent section.

Definition 1.1. The corona G1 ¯G2 of the graphs G1 and G2 is defined
as a graph obtained by taking one copy of G1 (with p vertices) and p copies
of G2 and then joining the i

th vertex of G1 to every vertex of the i
th copy

of G2.

Definition 1.2. Let G1 be a graph with p vertices and G2 be any graph.
A graph G1ôG2 is obtained from G1 and p copies of G2 by identifying one
vertex of ith copy of G2 with ith vertex of G1.

Definition 1.3. [3] Let T be a tree and u0 and v0 be the two adjacent
vertices in T. Let u and v be the two pendant vertices of T such that the
length of the path u0-u is equal to the length of the path v0-v. If the edge
u0v0 is deleted from T and u and v are joined by an edge uv, then such a
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transformation of T is called an elementary parallel transformation (or an
ept) and the edge u0v0 is called transformable edge. If by the sequence of
ept’s, T can be reduced to a path, then T is called a Tp-tree (transformed
tree) and such sequence regarded as a composition of mappings (ept’s)
denoted by P is called a parallel transformation of T. The path, the image
of T under P is denoted as P (T ). A TP -tree and the sequence of two ept’s
reducing it to a path are illustrated in the following figure.

2. Main Results

Theorem 2.1. Let T be a Tp-tree with even number of vertices. Then the
graph T ¯Kn is a one modulo three mean graph for all n ≥ 1.

Proof. Let T be a TP -tree with m vertices where m is even. By the
definition of Tp-tree, there exists a parallel transformation P of T such that
for the path P (T ) we have (i) V (P (T )) = V (T ) (ii) E(P (T )) = (E(T ) −
Ed) ∪ Ep where Ed is the set of edges deleted from T and Ep is the set of
edges newly added through the sequence P = (P1, P2, . . . , Pk) of the epts
P used to arrive the path P (T ). Clearly, Ed and Ep have the same number
of edges.

Now, we denote the vertices of P (T ) successively as u1, u2, . . . , um start-
ing from one pendant vertex of P (T ) right up to the other. Hence the vertex
set V (T ) = {u1, u2, u3, . . . , um} and the edge set E(T ) = {ei = uiui+1 :
1 ≤ i ≤ m − 1}. Let ui1, ui2, . . . , uin be the pendant vertices joined with
ui(1 ≤ i ≤ m) by an edge. Then, V (T ¯Kn) = {ui, uij : 1 ≤ i ≤ m, 1 ≤
j ≤ n} and E(T ¯Kn) = {ei = uiui+1 : 1 ≤ i ≤ m− 1} ∪ {eij = uiuij : 1 ≤
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i ≤ m, 1 ≤ j ≤ n}. The graph T ¯Kn has mn +m vertices mn +m − 1
edges.

Define a vertex labeling φ : V (T ¯Kn) → {0, 1, 3, . . . , 3mn + 3m− 5}
as follows:

For 1 ≤ i ≤ m, 1 ≤ j ≤ n φ(ui) =

(
3(n+ 1)(i− 1) if i is odd
3(n+ 1)i− 5 if i is even,

φ(uij) =

(
3(n+ 1)(i− 1) + 6j − 5 if i is odd
3(n+ 1)(i− 2) + 6j if i is even.

For the vertex labeling φ, the induced edge labeling φ∗ is as follows:
φ∗(eij) = 3(n + 1)(i − 1) + 3j − 2 for 1 ≤ i ≤ m, 1 ≤ j ≤ n and

φ∗(ei) = 3(n+ 1)i− 2 for 1 ≤ i ≤ m− 1.
Let uiuj be an edge of T for some indices i and j, 1 ≤ i < j ≤ m. Let P1

be the ept that deletes this edge and adds an edge ui+tuj−t where t is the
distance of ui from ui+t and also the distance of uj from uj−t. Let P be a
parallel transformation of T that contains P1 as one of the constituent epts.
Since ui+tuj−t is an edge in the path P (T ), it follows that i+ t+1 = j − t
which implies j = i+2t+1. Therefore, i and j are of opposite parity. The
induced label of the edge uiuj is given by

φ∗(uiuj) = φ∗(uiui+2t+1) =
l
φ(ui)+φ(ui+2t+1)

2

m
= 3(n+ 1)(i+ t)− 2, 1 ≤ i ≤ m.

φ∗(ui+tuj−t) = φ∗(ui+tui+t+1) =
l
φ(ui+t)+φ(ui+t+1)

2

m
= 3(n+ 1)(i+ t)− 2, 1 ≤ i ≤ m.

Therefore, we have φ∗(uiuj) = φ∗(ui+tuj−t).
It can be verified that the induced edge labels of T ¯Kn are 1, 4, 7, . . . ,

3mn + 3m − 5. Hence, T ¯Kn is a one modulo three mean graph for all
n ≥ 1. 2

An example for one modulo three mean labeling of T ¯K4 where T is
a Tp-tree with 10 vertices is given in Figure 2.
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Theorem 2.2. Let T be a Tp-tree with even number of vertices. Then the
graph T ôK1,n is a one modulo three mean graph.

Proof. Let T be a Tp-tree with m vertices where m is even. By the
definition of transformed tree there exists a parallel transformation P of T
such that for the path P (T ) we have (i) V (P (T )) = V (T ) (ii) E(P (T )) =
(E(T )−Ed)∪Ep where Ed is the set of edges deleted from T and Ep is the
set of edges newly added through the sequence P = (P1, P2, . . . , Pk) of the
epts P used to arrive at the path P (T ). Clearly, Ed and Ep have the same
number of edges.

Now, we denote the vertices of P (T ) successively as v1, v2, . . . , vm start-
ing from one pendant vertex of P (T ) right up to the other. Hence, the
vertex set V (T ) = {v1, v2 . . . , vm} and the edge set E(T ) = {ei = vivi+1 :
1 ≤ i ≤ m−1}. Let uj0, u

j
1, u

j
2, . . . , u

j
n(1 ≤ j ≤ m) be the vertices of ith copy

of K1,n with ujn = vj . Then V (T ôK1,n) = {uji : 0 ≤ i ≤ n, 1 ≤ j ≤ m} and
E(T ôK1,n) = {ei = vivi+1 : 1 ≤ i ≤ m− 1, e0i = viu

i
0 : 1 ≤ i ≤ m} ∪ {eij =
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ui0uij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The graph T ôK1,n has mn+m vertices and
mn+m− 1 edges.

Define a vertex labeling φ : V (T ôK1,n) → {0, 1, 3, . . . , 3mn + 3m − 5}
as follows:

For 1 ≤ i ≤ m φ(vi) =

(
3(n+ 1)(i− 1) if i is odd
3(n+ 1)i− 5 if i is even,

φ(uj0) =

(
3(n+ 1)(j − 1) + 1 if j is odd, 1 ≤ j ≤ m
3(n+ 1)j − 6 if j is even, 1 ≤ j ≤ m,

φ(uji ) =

(
3(n+ 1)(j − 1) + 6i if j is odd, 1 ≤ j ≤ m, 1 ≤ i ≤ n− 1
3(n+ 1)(j − 2) + 6i+ 1 if j is even, 1 ≤ j ≤ m, 1 ≤ i ≤ n− 1.

For the vertex labeling φ, the induced edge labeling φ∗ is as follows:

For 1 ≤ i ≤ m, 1 ≤ j ≤ n φ∗(eij) =

(
3(n+ 1)(i− 1) + 3j + 1 if i is odd
3(n+ 1)(i− 1) + 3j − 2 if i is even,

φ∗(e0i) =

(
3(n+ 1)(i− 1) + 1 if i is odd
3(n+ 1)i− 5 if i is even

and

φ∗(ei) = 3(n+ 1)i− 2 if 1 ≤ i ≤ m− 1.

Let vivj be a transformed edge in T for some indices i and j, 1 ≤ i <
j ≤ m. Let P1 be the ept that deletes the edge vivj and adds an edge
vi+tvj−t where t is the distance of vi from vi+t and the distance of vj from
vj−t. Let P be a parallel transformation of T that contains P1 as one of the
constituent epts.

Since vi+tvj−t is an edge in the path P (T ), it follows that i+t+1 = j−t
which implies j = i+2t+1. Therefore, i and j are of opposite parity. The
induced label of the edge vivj is given by

φ∗(vivj) = φ∗(vivi+2t+1) =
l
φ(vi)+φ(vi+2t+1)

2

m
= 3(n+ 1)(i+ t)− 2, 1 ≤ i ≤ m and

φ∗(vi+tvj−t) = φ∗(vi+tvi+t+1) =
l
φ(vi+t+φ(vi+t+1)

2

m
= 3(n+ 1)(i+ t)− 2, 1 ≤ i ≤ m.

Therefore φ∗(vivj) = φ∗(vi+tvj−t).

It can be verified that the induced edge labels of T ôK1,n are 1, 4, 7, . . . ,
3mn+ 3m− 5. Hence, T ôK1,n is a one modulo three mean graph. 2
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An example for one modulo three mean labeling of T ôK1,4 where T is
a Tp-tree with 12 vertices is given in Figure 3.

Theorem 2.3. If T be a Tp-tree with even number of vertices, then the
graph T ôPn is a one modulo three mean graph.

Proof. Let T be a Tp-tree with m vertices. By the definition of a
transformed tree there exists a parallel transformation P of T such that for
the path P (T ) we have (i) V (P (T )) = V (T ) (ii) E(P (T )) = (E(T )−Ed)∪
Ep where Ed is the set of edges deleted from T and Ep is the set of edges
newly added through the sequence P = (P1, P2, . . . , Pk) of the epts P used
to arrive at the path P (T ). Clearly, Ed and Ep have the same number of
edges.

Now, denote the vertices of P (T ) successively by v1, v2, . . . , vm starting
from one pendant vertex of P (T ) right up to the other one. Then the
vertex set V (T ) = {v1, v2, . . . , vm} and the edge set E(T ) = {ei = vivi+1 :
1 ≤ i ≤ m − 1}. Let uj1, u

j
2, . . . , u

j
n(1 ≤ j ≤ n) be the vertices of jth copy

of Pn. Then V (T ôPn) = {uji : 1 ≤ i ≤ n, 1 ≤ j ≤ m with ujn = vj} and
E(T ôPn) = {ei = vivi+1 : 1 ≤ i ≤ m− 1} ∪ {eij = ujiu

j
i+1 : 1 ≤ j ≤ m, 1 ≤

i ≤ n− 1}. The graph T ôPn has mn vertices and mn− 1 edges.
Define a vertex labeling φ : V (T ôPn)→ {0, 1, 3, . . . , 3mn−5} as follows:
For 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Marisol Martínez
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When j is odd, φ(uji ) =

(
3(i− 1) + 3n(j − 1) if i is odd
3(i− 2) + 3n(j − 1) + 1 if i is even.

When j is even, φ(uji ) =

(
3(nj − i)− 2 if i is odd
3(nj − i) if i is even.

For the vertex labeling φ, the induced edge labeling φ∗ is as follows:

For 1 ≤ i ≤ n−1, 1 ≤ j ≤ mφ∗(eji ) =

(
3n(j − 1) + 3i− 2 if j is odd
3nj − 3i− 2 if j is even.

For 1 ≤ j ≤ m− 1φ∗(ej) =
(
3n(j − 1) + 3n− 2 if j is odd
3nj − 2 if j is even.

Let vivj be a transformed edge in T for some indices i, j, 1 ≤ i < j ≤ m.
Let P1 be the ept that deletes the edge vivj and adds an edge vi+tvj−t where
t is the distance of vi from vi+t and the distance of vj from vj−t. Let P be
a parallel transformation of T that contains P1 as one of the constituent
epts.

Since vi+tvj−t is an edge in the path P (T ), it follows that i+t+1 = j−t
which implies j = i+2t+1. Therefore, i and j are of opposite parity, that
is, i is odd and j is even or vice-versa.

The induced label of the edge vivj is given by φ∗(vivj) = φ∗(vivi+2t+1) =l
φ(vi)+φ(vi+2t+1)

2

m
= 3n(i+ t)− 2, 1 ≤ i ≤ m and

φ∗(vi+tvj−t) = φ∗(vi+tvi+t+1) =
l
φ(vi+t)+φ(vi+t+1)

2

m
= 3n(i + t) − 2, 1 ≤ i ≤ m. Therefore, φ∗(vivj) = φ∗(vi+tvj−t). Let

eji = ujiu
j
i+1(1 ≤ i ≤ n − 1, 1 ≤ j ≤ m), ej = vjvj+1(1 ≤ j ≤ m − 1)

be the edges of T ôPn.

It can be verified that the induced edge labels of T ôPn are 1, 4, 7, . . . ,
3mn− 5. Hence, T ôPn is a one modulo three mean graph. 2



One modulo three mean labeling of transformed trees 285

An example for one modulo three mean labeling of T ôP5 where T is a
Tp-tree with 10 vertices is given in Figure 4.

Theorem 2.4. If T be a Tp-tree with even number of vertices, then the
graph T ô2Pn is a one modulo three mean graph.

Proof. Let T be a Tp-tree with m vertices where m is even. By the
definition of a transformed tree there exists a parallel transformation P of
T such that for the path P (T ) we have (i) V (P (T )) = V (T ) (ii) E(P (T )) =
(E(T )−Ed)∪Ep where Ed is the set of edges deleted from T and Ep is the
set of edges newly added through the sequence P = (P1, P2, . . . , Pk) of the
epts P used to arrive at the path P (T ). Clearly, Ed and Ep have the same
number of edges.

Now, denote the vertices of P (T ) successively by v1, v2, . . . , vm starting
from one pendant vertex of P (T ) right up to the other. Then the vertex
set V (T ) = {v1, v2, . . . , vm} and the edge set E(T ) = {ei = vivi+1 : 1 ≤ i ≤
m − 1}. Let uj1,1, u

j
1,2, . . . , u

j
1,n and uj2,1, u

j
2,2, . . . , u

j
2,n (1 ≤ j ≤ m) be the

vertices of the two vertex disjoint paths joined by the jth vertex of T such
that vj = uj1,n = uj2,n. Then V (T ô2Pn) = {vj , uj1,t, u

j
2,t :: 1 ≤ i ≤ n, 1 ≤

j ≤ m with uj1,n = uj2,n = vj} and E(T ô2Pn) = {ej1,i = uj1,iu
j
1,i+1, e

j
2,i =

Marisol Martínez
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uj2,i, u
j
2,i+1 : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ m} ∪ {ej = vjvj+1 : 1 ≤ j ≤ m − 1}.

The graph T ô2Pn has 2mn−m vertices and m(2n− 1)− 1 edges.

Define a vertex labeling φ : V (T ôPn)→ {0, 1, 3, . . . , 6mn− 3m− 5} as
follows: For 1 ≤ i ≤ m, 1 ≤ j ≤ n.

When j is odd, φ(uj1,i) =

(
3(i− 1) + 3(j − 1)(n+ 2) if i is odd
3(i− 2) + 3(j − 1)(n+ 2) + 1 if i is even

φ(uj2,i) =

(
3(2n− 1)j − 3i if i is odd
3(2n− 1)j − 3i− 2 if i is even.

When j is even, φ(uj1,i) =

(
3(2n− 1)j − 6n+ 3i− 2 if i is odd
3(2n− 1)j − 6n+ 3i if i is even,

φ(uj2,i) =

(
3(2n− 1)j − 3i− 2 if i is odd
3(2n− 1)j − 3i if i is even.

For the vertex labeling φ, the induced edge labeling φ∗ is as follows:

For 1 ≤ i ≤ n−1, 1 ≤ j ≤ mφ∗(ej1,i) = 3(2n−1)(j−1)+3i−2, φ∗(e
j
2,i) =

3(2n− 1)j − 3i− 3n+ 10 and φ∗(ej) = 3(2n− 1)j − 2 if 1 ≤ j ≤ m− 1.

Let vivj be the transformed edge in T for some indices i, j, 1 ≤ i < j ≤ m
and let P1 be the ept that deletes the edge vivj and adds the edge vi+tvj−t
where t is the distance of vi from vi+t and the distance of vj from vj−t.
Let P be a parallel transformation of T that contains P1 as one of the
constituent epts.

Since, vi+tvj−t is an edge in the path P (T ), it follows that i+t+1 = j−t
which implies j = i+2t+1. Therefore, i and j are of opposite parity, that
is, i is odd and j is even or vice-versa.

The induced label of the edge vivj is given by φ∗(vivj) = φ∗(vivi+2t+1) =l
φ(vi)+φ(vi+2t+1)

2

m
= 3(2n− 1)(i+ t)− 2, 1 ≤ i ≤ m and

φ∗(vi+tvj−t) = φ∗(vi+tvi+t+1) =
l
φ(vi+t)+φ(vi+t+1)

2

m
= 3(2n − 1)(i + t) − 2, 1 ≤ i ≤ m. Therefore, φ∗(vivj) = φ∗(vi+tvj−t). Let
be the edges of T ô2Pn.

It can be verified that the induced edge labels of T ô2Pn are 1, 4, 7, . . . ,
6mn− 3m− 5. Hence, T ô2Pn is a one modulo three mean graph. 2
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An example for one modulo three mean labeling of T ô2P4 where T is a
Tp-tree with 10 vertices is given in Figure 5.

3. Conclusion

The concept of one modulo three mean labeling was introduced in [4]. In
this paper we extend the study on one modulo three mean labeling and
prove that graphs T ¯Kn, T ôK1,n, T ôPn and T ô2Pn are one modulo three
mean graphs.
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