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Abstract

In this paper, we give sufficient conditions to guarantee the asymp-
totic stability of the zero solution to a kind of delay nonlinear frac-
tional differential equations of order α (1 < α < 2). By using the
Banach’s contraction mapping principle in a weighted Banach space,
we establish new results on the asymptotic stability of the zero solu-
tion provided that g (t, 0) = f (t, 0, 0) = 0, which include and improve
some related results in the literature.
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1. Introduction

Fractional differential equations with and without delay arise from a variety
of applications including in various fields of science and engineering such
as applied sciences, practical problems concerning mechanics, the engineer-
ing technique fields, economy, control systems, physics, chemistry, biology,
medicine, atomic energy, information theory, harmonic oscillator, nonlin-
ear oscillations, conservative systems, stability and instability of geodesic
on Riemannian manifolds, dynamics in Hamiltonian systems, etc. In par-
ticular, problems concerning qualitative analysis of linear and nonlinear
fractional differential equations with and without delay have received the
attention of many authors, see [1]-[13], [15] and the references therein.

Recently, Agarwal, Zhou and He [2] discussed the existence of solutions
for the neutral fractional differential equation with bounded delay(

CDα (x(t)− g(t, xt)) = f (t, xt) , t ≥ t0,
xt0 = φ,

where CDα is the standard Caputo’s fractional derivative of order 0 <
α < 1. By employing the Krasnoselskii’s fixed point theorem, the authors
obtained existence results.

The delay fractional differential equation⎧⎨⎩
dα

dtα
x(t) = f (t, x(t), x(t− τ)) , t ∈ [0, T ] ,

x (t) = φ (t) , t ∈ [−τ, 0] , 0 < α < 1,

has been investigated in [1], where
dα

dtα
denotes Riemann-Liouville frac-

tional derivative of order 0 < α < 1. By using the Krasnoselskii’s fixed
point theorem, the existence of solutions has been established.

In [6], Ge and Kou investigated the asymptotic stability of the zero
solution of the following nonlinear fractional differential equation(

CDα
0+x(t) = kx (t) + f (t, x(t)) , t ≥ 0,

x0(0) = 0, x(0) = x0,

where CDα
0+ is the standard Caputo’s fractional derivative of order 1 < α <

2. By employing the Banach’s contraction mapping principle in a weighted
Banach space, the authors obtained asymptotic stability results.
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In this paper, we are interested in the analysis of qualitative theory of
the problems of the asymptotic stability of the zero solution to delay frac-
tional differential equations. Inspired and motivated by the works men-
tioned above and the papers [1]-[13], [15] and the references therein, we
concentrate on the asymptotic stability of the zero solution for the nonlin-
ear fractional differential equation with variable delay

(
CDα

0+x(t) = kx (t) + f (t, x(t), x(t− τ(t))) + CDα−1
0+ g(t, x(t− τ(t))), t ≥ 0,

x0(0) = 0, x(t) = φ(t), t ∈ [m0, 0] ,

(1.1)

where 1 < α < 2, k ∈ R is a given constant, R+ = [0,+∞),

τ : R+ → R+ is continuous with t − τ(t) → ∞ as t → ∞, m0 =
inft≥0 {t− τ(t)}, g : R+ ×R→ R and

f : R+ ×R ×R → R are continuous functions and g(t, 0) = f(t, 0, 0) =
0, CDα

0+ is the standard Caputo fractional derivative and we denote the
solution of (1.1) by x (t, φ, 0). To show the asymptotic stability of the zero
solution, we transform (1.1) into an integral equation and then use Banach’s
contraction mapping principle [14].

This paper is organized as follows. In section 2, we introduce some
notations and lemmas, and state some preliminaries results needed in later
sections. Also, we present the inversion of (1.1). In Section 3, we give and
prove our main results on stability.

2. Preliminaries

We introduce some necessary definitions, lemmas and theorems which will
be used in this paper. For more details, see [7, 8, 13, 14].

Definition 2.1 ([7, 13]). The fractional integral of order α > 0 of a func-
tion x : R+ → R is given by

Iα0+x(t) =
1

Γ(α)

Z t

0
(t− s)α−1x(s)ds,

provided the right side is pointwise defined on R+.
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Definition 2.2 ([7, 13]). The Caputo fractional derivative of order α > 0
of a function x : R+ → R is given by

CDα
0+x(t) = In−α0+ x(n)(t) =

1

Γ(n− α)

Z t

0
(t− s)n−α−1x(n)(s)ds,

where n = [α] + 1, provided the right side is pointwise defined on R+.

Lemma 2.3 ([7, 13]). Let <(α) > 0. Suppose x ∈ Cn−1 [0,+∞) and x(n)
exists almost everywhere on any bounded interval of R+. Then

³
Iα C
0+ Dα

0+x
´
(t) = x(t)−

n−1X
k=0

x(k)(0)

k!
tk.

In particular, when 0 < <(α) < 1,
³
Iα C
0+ Dα

0+x
´
(t) = x(t)− x(0).

Remark 2.4. From Definitions 2.1, 2.2 and Lemma 2.3, it is easy to see
that

(1) Let <(α) > 0. If x is continuous on R+, then Dα
0+I

α
0+x(t) = x(t)

holds for all t ∈ R+.
(2) The Caputo derivative of a constant is equal to zero.

The following Banach space plays a fundamental role in our discussion.
Let h : [m0,+∞)→ (0, 1] be a strictly decreasing continuous function with
h(m0) = 1, h(t)→ 0 as t→∞. Let

E =

(
x ∈ C ([m0,+∞)) : sup

t≥m0

{h(t) |x(t)|} <∞
)
.

ThenE is a Banach space equipped with the norm kxk = supt≥m0
{h(t) |x(t)|}.

For more properties of this Banach space, see [8]. Moreover, let

kϕkt = max {|ϕ(s)| : m0 ≤ s ≤ t} ,

for any t ≥ m0, any given ϕ ∈ C ([m0,+∞)) and let =(ε) = {x ∈ E : kxk ≤
ε and x (t) = φ (t) if t ∈ [m0, 0]} for any ε > 0.

Lemma 2.5 ([5]). Let r ∈ C ([m0,+∞)). Then x ∈ C ([m0,+∞)) is a
solution of the Cauchy type problem(

CDα
0+x(t) = r(t), t ∈ R+, 1 < α < 2,

x0(0) = 0, x(t) = φ(t), t ∈ [m0, 0] ,
(2.1)



Asymptotic stability in delay nonlinear fractional differential ... 267

if and only if x is a solution of the Cauchy type problem(
x0(t) = Iα−10+ r(t), t ∈ R+,
x(t) = φ(t), t ∈ [m0, 0] .

(2.2)

Lemma 2.6. If R ∈ C ([0,∞)) satisfies the integral equation

R (t) = 1 + kIα0+R(t),(2.3)

then x ∈ C ([m0,+∞)) is a solution of (1.1) if and only if

x(t) = R (t)φ(0)− g(0, φ(−τ(0)))
Z t

0
R (s) ds

+

Z t

0
R (t− s) g(s, x(s− τ(s)))ds

+
1

Γ(α− 1)

Z t

0
R (t− s)

Z s

0
(s− u)α−2f(u, x(u), x(u− τ(u)))duds.

(2.4)

Proof. Let x ∈ C ([m0,+∞)) be a solution of (1.1). From Lemma 2.5,
we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x0(t) = g(t, x(t− τ(t)))− g(0, φ(−τ(0)))
+

k

Γ(α− 1)
R t
0 (t− s)α−2 x (s) ds

+
1

Γ(α− 1)
R t
0 (t− s)α−2 f(s, x(s), x(s− τ(s)))ds,

x(t) = φ(t), t ∈ [m0, 0] .

(2.5)

On the other hand, for any given t ≥ 0, similar to the argument in
section 3.5 of [7], it is easy to see that there exists at least oneR ∈ C ([0,∞))
satisfying (2.3). Besides, for any R ∈ C ([0,∞)) satisfying (2.3), we can get
that R (0) = 1, R0 (t) = kIα−10+ R(t), and

dR (t− s)

ds
=

−k
Γ(α− 1)

Z t−s

0
R (t− s− v) vα−2dv
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=
−k

Γ(α− 1)

Z t

s
R (t− u) (u− s)α−2 du.(2.6)

For fixed t > 0, we can conclude that

R t
0

n
dR(t−s)

ds x (s) +R (t− s)x0 (s)
o
ds

= R (t− s)x (s)|s=ts=0 = x (t)−R (t)φ (0) .

Considering (2.5) and (2.6), we have

x (t)−R (t)φ (0)

=
R t
0
dR(t−s)

ds x (s) ds+
R t
0

k

Γ(α− 1)
R s
0 (s− u)α−2 x (u) duds

+
R t
0 R (t− s) [g(s, x(s− τ(s)))− g(0, φ(−τ(0)))] ds

+ 1
Γ(α−1)

R t
0 R (t− s)

R s
0 (s− u)α−2f(u, x(u), x(u− τ(u)))duds

=
R t
0

∙
dR(t−s)

ds +
k

Γ(α− 1)
R t
s R (t− u) (u− s)α−2 du

¸
x (s) ds

−g(0, φ(−τ(0)))
R t
0 R (s) ds+

R t
0 R (t− s) g(s, x(s− τ(s)))ds

+ 1
Γ(α−1)

R t
0 R (t− s)

R s
0 (s− u)α−2f(u, x(u), x(u− τ(u)))duds

= −g(0, φ(−τ(0)))
R t
0 R (s) ds+

R t
0 R (t− s) g(s, x(s− τ(s)))ds

+ 1
Γ(α−1)

R t
0 R (t− s)

R s
0 (s− u)α−2f(u, x(u), x(u− τ(u)))duds.

Since each step is reversible, the converse follows easily. This completes
the proof. 2

Definition 2.7. The trivial solution x = 0 of (1.1) is said to be
(i) stable in Banach space E, if for every ε > 0, there exists a σ = σ (ε) > 0
such that |φ(t)| ≤ σ implies that the solution x(t) = x(t, φ, 0) exists for all
t ≥ m0 and satisfies kxk ≤ ε.
(ii) asymptotically stable, if it is stable in Banach space E∗ and there exists
a number σ > 0 such that |φ(t)| ≤ σ implies limt→∞ x(t) = 0.
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3. Main results

In this section, we shall present and prove our main results. First, we define
the operator T : E → E as follows, (Tx) (t) = φ(t) if t ∈ [m0, 0], while, for
t > 0

(Tx) (t) = R (t)φ(0)− g(0, φ(−τ(0)))
R t
0 R (s) ds

+
R t
0 R (t− s) g(s, x(s− τ(s)))ds

+ 1
Γ(α−1)

R t
0 R (t− s)

R s
0 (s− u)α−2f(u, x(u), x(u− τ(u)))duds

= R (t)φ(0)− g(0, φ(−τ(0)))
R t
0 R (s) ds

+

Z t

0
[R (t− s) g(s, x(s− τ(s))) +K (t− s) f(s, x(s), x(s− τ(s)))] ds,

(3.1)

where

K (t) =
1

Γ(α− 1)

Z t

0
(t− u)α−2R (u) du.

We introduce the following hypotheses.
(h1) There exists a constant M1 > 0 such that

sup
t≥0

Z t

0
h (t) |R (s)| ds ≤M1.

(h2) There exists a constant ν ∈ (0, 1) such that

sup
t≥0

|k|
Γ(α)

Z t

0
(t− s)α−2h (t)h−1 (s) ds = ν.

(h3) g and f are continuous functions and g(t, 0) = f(t, 0, 0) = 0. Also,
there exist constants β ∈ (0, 1), l > 0 and continuous functions Lg, Lf1, Lf2 :
R+ → R+ such that

sup
t≥0

Z t

0
h (t) {|R (t− s)|Lg (s) + |K (t− s)| [Lf1 (s) + Lf2 (s)]} ds ≤ β,

(3.2)
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|g (t, x)− g (t, y)| ≤ h (t)Lg (t) |x− y| ,(3.3)

and

|f (t, x, y)− f (t, z, w)| ≤ h (t) (Lf1 (t) |x− z|+ Lf2 (t) |y − w|) ,(3.4)

for all t ≥ 0, |x| , |y| , |z| , |w| ≤ l.

Theorem 3.1. Suppose that (h1) − (h3) hold. Then the trivial solution
x = 0 of (1.1) is stable in Banach space E.

Proof. Since g and f are continuous functions with g (t, 0) = f (t, 0, 0) =
0, for each continuous functions Lg, Lf1 and Lf2 satisfying (3.2), by (3.3)
and (3.4), we have

|g (t, x)| ≤ Lg (t) kxk and |f (t, x, y)| ≤ Lf1 (t) kxk+ Lf2 (t) kyk ,

for all kxk , kyk ≤ l. Next, we will prove that for any ε ∈ (0, l], there exists
a σ > 0 such that for |φ(t)| ≤ σ, the unique solution x of (1.1) satisfies
kxk ≤ ε.

Let ε > 0 (ε ∈ (0, l]) be given. For all t ≥ 0, we have
h (t) |R (t)| =

¯̄̄
h (t) + k

Γ(α)

R t
0(t− s)α−1h (t)R (s) ds

¯̄̄
≤ 1 + |k|

Γ(α)

R t
0(t− s)α−1h (t)h−1 (s) ds sups≥0 {h (s) |R (s)|}

≤ 1 + ν sups≥0 {h (s) |R (s)|} ,
then

sup
s≥0

{h (s) |R (s)|} ≤ 1

1− ν
.

Let M2 = sups≥0 {h (s) |R (s)|} and σ = 1−β
M2+M1Lg(0)

ε. Obviously,

=(ε) ⊆ E is a closed convex subset and the operator T is continuous.
Then for any given x ∈ =(ε), |φ (t)| ≤ σ, we have

h(t) |(Tx) (t)|

≤ h (t) |R (t)| |φ(0)|+ h (t) |g(0, φ(−τ(0)))|
R t
0 |R (s)| ds



Asymptotic stability in delay nonlinear fractional differential ... 271

+h(t)
R t
0 [|R (t− s)| |g(s, x(s− τ(s)))|+ |K (t− s)| |f(s, x(s), x(s− τ(s)))|] ds

≤M2 |φ(0)|+M1Lg (0) |φ(−τ(0))|

+
R t
0 h (t) {|R (t− s)|Lg (s) + |K (t− s)| [Lf1 (s) + Lf2 (s)]} ds kxk

≤M2 |φ(0)|+M1Lg (0) |φ(−τ(0))|+ β kxk ≤ ε.

Therefore, T : =(ε)→ =(ε). Furthermore,

h (t) |(Tx) (t)− (Ty) (t)|

≤ h (t)
R t
0 [|R (t− s)| |g(s, x(s− τ(s)))− g(s, y(s− τ(s)))|

+ |K (t− s)| |f(s, x(s), x(s− τ(s)))− f(s, y(s), y(s− τ(s)))| ds

≤
R t
0 h (t) {|R (t− s)|Lg (s) + |K (t− s)| [Lf1 (s) + Lf2 (s)]} ds kx− yk

≤ β kx− yk .

Then |(Tx) (t)− (Ty) (t)| ≤ β kx− yk (0 < β < 1) is a contraction.
It follows from the Banach contraction mapping principle, that T has a
unique fixed point x ∈ =(ε), which is also the solution of (1.1).

On the other hand, for any solution x of (1.1) and any ε > 0, there
exists a σ = 1−β

M2+M1Lg(0)
ε such that |φ (t)| ≤ σ implies that

kxk = supt≥m0
{h (t) |(Tx) (t)|}

≤M2 |φ(0)|+M1Lg (0) |φ(−τ(0))|

+supt≥0
R t
0 h (t) {|R (t− s)|Lg (s) + |K (t− s)| [Lf1 (s) + Lf2 (s)]} ds kxk

≤M2 |φ(0)|+M1Lg (0) |φ(−τ(0))|+ β kxk ≤ ε.

Thus the trivial solution of (1.1) is stable in the Banach space E. 2

Before showing our main results on the asymptotic stability of (1.1), we
introduce two new Banach spaces

E∗ =
½
x ∈ C ([m0,∞)) : lim

t→∞
x (t) = 0

¾
,

and
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Eβ =

½
x ∈ C ([m0,∞)) : lim

t→∞
tα−Bx (t) = 0, 0 < β < 1 < α < 2

¾
,

equipped with the norms kxkE∗ = supt≥m0
|x (t)| and

kxkEβ = supt≥m0

n
tα−B |x (t)|

o
, respectively. Obviously, Eβ ⊆ E∗ ⊆ E.

Let =∗ = {x ∈ E∗ : x (t) = φ (t) if t ∈ [m0, 0]}.

Theorem 3.2. Suppose that the condition (h3) of Theorem 3.1 with h (t) =
1 holds, 1 < α < 1 + β, limt→∞ tα−BR (t) = 0, limt→∞

R t
0 R (s) ds = 0 and

lim
t→∞

Z t

0
{|R (t− s)|Lg (s) + |K (t− s)| [Lf1 (s) + Lf2 (s)]} ds = 0.

Then the trivial solution of (1.1) is asymptotically stable in the Banach
space E∗.

Proof. Similar to the argument in [6, 7, 8], it is easy to prove that there
exists at least one solution of (2.5) in the Banach space Eβ. Moreover, if
limt→∞ tα−BR (t) = 0, we have limt→∞R (t) = 0 and

|K (t)| =
¯̄̄

1
Γ(α−1)

R t
0(t− u)α−2uβ−αuα−βR (u) du

¯̄̄
≤ Γ(1+β−α)

Γ(β) tβ−1 supt≥0
n
tα−βR (t)

o
.

By Theorem 3.1, if limt→∞ tα−BR (t) = 0, limt→∞
R t
0 R (s) ds = 0 and

the condition (h3) of Theorem 3.1 with h (t) = 1 holds, then the trivial
solution of (1.1) is stable in the Banach space E∗. Furthermore, for any
t ≥ 0, if follows from (3.1) that

|(Tx) (t)| ≤ |R (t)| |φ(0)|+ Lg (0) |φ(−τ(0))|
¯̄̄R t
0 R (s) ds

¯̄̄
+
R t
0 {|R (t− s)|Lg (s) + |K (t− s)| [Lf1 (s) + Lf2 (s)]} ds kxkE∗

→ 0 as t→∞,

which means that T : =∗ → =∗. Therefore, the trivial solution of (1.1) is
asymptotically stable in the Banach space E∗. 2



Asymptotic stability in delay nonlinear fractional differential ... 273

References

[1] S. Abbas, Existence of solutions to fractional order ordinary and delay
differential equations and applications, Electronic Journal of Differen-
tial Equations, Vol. 2011, No. 09, pp. 1-11, (2011).

[2] R. P. Agarwal, Y. Zhou, Y. He, Existence of fractional functional dif-
ferential equations, Computers and Mathematics with Applications 59,
pp. 1095-1100, (2010).

[3] T. A. Burton, B. Zhang, Fractional equations and generalizations of
Schaefer’s and Krasnoselskii’s fixed point theorems, Nonlinear Anal.
75, pp. 6485—6495, (2012).

[4] F. Chen, J. J. Nieto, Y. Zhou, Global attractivity for nonlinear frac-
tional differential equations, Nonlinear Analysis: Real Word Applica-
tions 13, pp. 287-298, (2012).

[5] F. Ge, C. Kou, Stability analysis by Krasnoselskii’s fixed point theorem
for nonlinear fractional differential equations, Applied Mathematics
and Computation 257, pp. 308-316, (2015).

[6] F. Ge, C. Kou, Asymptotic stability of solutions of nonlinear fractional
differential equations of order 1 < α < 2, Journal of Shanghai Normal
University, Vol. 44, No. 3, pp. 284-290, (2015).

[7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications
of Fractional Differential Equations, Elsevier, (2006).

[8] C. Kou, H. Zhou, Y. Yan, Existence of solutions of initial value prob-
lems for nonlinear fractional differential equations on the half-axis,
Nonlinear Anal. 74, pp. 5975—5986, (2011).

[9] Y. Li, Y. Chen, I. Podlunby, Mittag—Leffler stability of fractional order
nonlinear dynamic systems, Automatica 45, pp. 1965—1969, (2009).

[10] Y. Li, Y. Chen, I. Podlunby, Stability of fractional-order nonlinear
dynamic systems: Lyapunov direct method and generalized Mittag—
Leffler stability, Comput. Math. Appl. 59, pp. 1810—1821, (2010).



274 A. Ardjouni, H. Boulares and A. Djoudi

[11] C. Li, F. Zhang, A survey on the stability of fractional differential
equations, Eur. Phys. J. Special Topics. 193, pp. 27—47, (2011).

[12] I. Ndoye, M. Zasadzinski, M. Darouach, N. E. Radhy, Observerbased
control for fractional-order continuous-time systems, Proceedings of
the Joint 48th IEEE Conference on Decision and Control and 28th
Chinese Control Conference, WeBIn5.3, pp. 1932—1937, December 16—
18, (2009).

[13] I. Podlubny, Fractional Differential Equations, Academic Press, San
Diego, (1999).

[14] D. R. Smart, Fixed point theorems, Cambridge Uni. Press., Cambridge,
(1980).
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