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Abstract

Using a corollary to Karamata’s main theorem [Math. Z. 32 (1930),
319—320], we prove that if a slowly decreasing sequence of real numbers
is Abel summable, then it is convergent in the ordinary sense.
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1. Introduction

A number of authors such as Schmidt [9], Maddox [6], Móricz [8], and Talo
and Başar [11] have proved several Tauberian theorems for some summabil-
ity methods for which slowly decreasing condition for sequences is a Taube-
rian condition. Schmidt [9] obtained that the slowly decreasing condition
for sequences of real numbers is a Tauberian condition for Abel summabil-
ity. Maddox [6] introduced the slowly decreasing sequence in an ordered
linear space and proved that a Cesàro summable sequence is convergent if
it is slowly decreasing in an ordered linear space. Móricz [8] established a
Tauberian theorem which states that ordinary convergence of a sequence
follows from its statistical Cesàro summability if it is slowly decreasing.
Talo and Başar [11] introduced the concept of slowly decreasing sequences
for fuzzy numbers and they proved that the slowly decreasing condition
for sequences is a Tauberian condition for the statistical convergence and
Cesàro summability for sequences of fuzzy numbers.

Littlewood [5] proved that n(un−un−1) = O(1) is a Tauberian condition
for Abel summability of (un). But his proof was complicated and based
on the repeated differentiation. A first clever and surprisingly simple proof
based on Weierstrass approximation theorem of Littlewood’s theorem was
given by Karamata [2].

The main purpose of this study is to give an alternative simpler proof of
the following Tauberian theorem which is more general than Littlewood’s
theorem [5] for Abel summability method.

Theorem 1.1. If (un) is Abel summable to s and slowly decreasing, then
limn un = s.

To prove Theorem 1.1, we first obtain Cesàro convergence of the genera-
tor sequence of a given sequence (un) by means of a corollary to Karamata’s
main Theorem, and then recover convergence of (un) by Tauber’s second
theorem [12].

Our proof is much easier than the existing one and uses the well known
results in Tauberian theory. For a different proof of Theorem 1.1, see [1].
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2. Preliminaries

For a sequence u = (un) of real numbers, we write (un) in terms of (vn) as

un = vn +
nX

k=1

vk
k
+ u0, (n = 1, 2, ...)(2.1)

where vn =
1

n+1

Pn
k=1 k(uk − uk−1). The sequence (vn) is called a gener-

ator sequence of (un). We note that σ
(1)
n (u) = 1

n+1

Pn
k=0 uk = u0+

Pn
k=1

vk
k .

Let u = (un) be a sequence of real numbers. For each nonnegative

integer m, we define σ
(m)
n (u) by

σ(m)n (u) =

⎧⎪⎨⎪⎩
1

n+ 1

nX
k=0

σ
(m−1)
k (u) ,m ≥ 1

un ,m = 0

A sequence (un) is said to be Abel summable to s if u0 +
P∞

n=1(un −
un−1)xn converges for 0 < x < 1, and tends to s as x→ 1−.

A sequence (un) is called (A,m) summable to s if (σ
(m)
n (u)) is Abel

summable to s. Ifm = 0, then (A,m) summability reduces to Abel summa-
bility. It is clear that Abel summability of (un) implies (A,m) summability
of (un).

Throughout this work, the symbol [λn] denotes the integral part of the
product λn.

A sequence (un) is said to be slowly decreasing [9] if

lim
λ→1+

lim inf
n→∞

min
n+1≤k≤[λn]

(uk − un) ≥ 0(2.2)

or equivalently [8],

lim
λ→1−

lim inf
n→∞

min
[λn]+1≤k≤n

(un − uk) ≥ 0.(2.3)

Notice that (un) is slowly decreasing if the classical one-sided Tauberian
condition of Landau [1] is satisfied, that is, there exists a positive constant
C > 0 such that

n(un − un−1) ≥ −C(2.4)

for all nonnegative n. Indeed, for any k > n, we have

uk − un =
kX

j=n+1

(uj − uj−1) ≥ −C
kX

j=n+1

1

j
≥ −C log

µ
k

n

¶
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whence we conclude that

lim inf
n→∞

min
n+1≤k≤[λn]

(uk − un) ≥ −C log λ, λ > 1.

Taking λ→ 1+, we have the inequality (2.2).
Note that we used C to denote a constant, possibly different at each

occurrence.
A sequence (un) is slowly increasing if and only if (−un) is slowly de-

creasing, and an equivalent definition of a slowly increasing sequence as
follows:

A sequence (un) is said to be slowly increasing if

lim
λ→1+

lim sup
n→∞

max
n+1≤k≤[λn]

(uk − un) ≤ 0.(2.5)

The condition (2.5) is reformulated as follows (see [8]):

lim
λ→1−

lim sup
n→∞

max
[λn]+1≤k≤n

(un − uk) ≤ 0.(2.6)

It is plain that a sequence (un) is said to be slowly oscillating if and
only if (un) is both slowly increasing and slowly decreasing. Notice that
each of the conditions (2.2) and (2.5) is necessary for convergence (see [4]).

If (un) converges to s, then (un) is Abel summable to s. However, the
converse of this statement is not always true. Note that Abel summability
of (un) implies convergence of (un) under certain additional hypotheses
called Tauberian conditions. Any theorem which states that convergence
of sequence (un) follows from Abel summability of (un) and some Tauberian
condition(s) is called a Tauberian theorem for Abel summability method.

3. Corollary to Karamata’s Main Theorem and Lemmas

Our proof is based on the following corollary to Karamata’s main theorem
and three Lemmas.

Corollary to Karamata’s Main Theorem. ([2]) If u = (un) is Abel

summable to s and un ≥ −C for some nonnegative C, then limn σ
(1)
n (u) = s.

Lemma 3.1. ([3]) If, for x → 1−, a function f(x), which is integrable in
[0, 1], satisfies the limiting relation

(1− x)2f(x)→ s,(3.1)
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then, for x→ 1−, we also have

(1− x)

Z x

0
f(t) dt→ s.(3.2)

The next lemma gives a necessary condition for a slowly decreasing
sequence in terms of the generator sequence (vn).

Lemma 3.2. ([7]) If (un) is slowly decreasing, then vn ≥ −C for some C,
where vn =

1
n+1

Pn
k=1 k(uk − uk−1).

Next, we represent the difference un − σ
(1)
n (u) in two different ways.

Lemma 3.3. ([10]) Let u = (un) be a sequence of real numbers.
(i) For λ > 1 and sufficiently large n,

un − σ(1)n (u) =
[λn] + 1

[λn]− n

³
σ
(1)
[λn](u)− σ(1)n (u)

´
− 1

[λn]− n

[λn]X
k=n+1

(uk − un).

(3.3)

(ii) For 0 < λ < 1 and sufficiently large n,

un − σ(1)n (u) =
[λn] + 1

n− [λn]
³
σ(1)n (u)− σ

(1)
[λn](u)

´
+

1

n− [λn]

nX
k=[λn]+1

(un − uk).

(3.4)

4. Proof of Theorem 1.1

Proof. Since (un) is Abel summable to s, then (σ
(1)
n (u)) is also Abel

summable to s. Hence, we conclude by (2.1) that (vn) =
³

1
n+1

Pn
k=0 k(uk − uk−1)

´
is Abel summable to zero by Lemma 3.1. It follows by Lemma 3.2 that there
exists a nonnegative C such that

vn ≥ −C.(4.1)

Taking (4.1) and the fact that (vn) is Abel summable to zero into ac-

count, we obtain by Corollary to Karamata’s Main Theorem that σ
(1)
n (v) =
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o(1) as n→∞. Since (σ(1)n (u)) is Abel summable to s and σ
(1)
n (v) = o(1) as

n→∞, we have that (σ(1)n (u)) converges to s by Tauber’s second theorem
[12].

By the fact that every convergent sequence is slowly increasing, we have

(σ
(1)
n (u)) is slowly increasing. Thus, (−σ(1)n (u)) is slowly decreasing.

Since (sn) is slowly decreasing, (vn) is slowly decreasing.

By Lemma 3.3 (i), we have

vn − σ(1)n (v) =
[λn] + 1

[λn]− n

³
σ
(1)
[λn](v)− σ(1)n (v)

´
− 1

[λn]− n

[λn]X
k=n+1

(vk − vn).

(4.2)

It is easy to verify that for λ > 1 and sufficiently large n,

λ

2(λ− 1) ≤
[λn] + 1

[λn]− n
≤ 3λ

2(λ− 1) .(4.3)

By σ
(1)
n (v) = o(1) as n→∞ and (4.10), for all λ > 1,

lim
n→∞

[λn] + 1

[λn]− n

³
σ
(1)
[λn](v)− σ(1)n (v)

´
= 0.(4.4)

By (4.2) and (4.3), we have

vn − σ(1)n (v) ≤ [λn] + 1

[λn]− n

³
σ
(1)
[λn](v)− σ(1)n (v)

´
− min

n+1≤k≤[λn]
(vk − vn).

(4.5)

Taking lim sup of both sides of (4.5), we have

lim sup
n

(vn − σ(1)n (v)) ≤ lim sup
n→∞

[λn] + 1

[λn]− n

³
σ
(1)
[λn](v)− σ(1)n (v)

´
− lim inf

n
min

n+1≤k≤[λn]
(vk − vn).(4.6)
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The inequality (4.6) becomes

lim sup
n

(vn − σ(1)n (v)) ≤ − lim inf
n

min
n+1≤k≤[λn]

(vk − vn)(4.7)

by (4.4). Taking λ→ 1+ in (4.7), we have

lim sup
n

(vn − σ(1)n (v)) ≤ 0(4.8)

by (2.2).
By Lemma 3.3 (ii), we have

vn − σ(1)n (v) =
[λn] + 1

n− [λn]
³
σ(1)n (v)− σ

(1)
[λn](v)

´
+

1

n− [λn]

nX
k=[λn]+1

(vn − vk).

(4.9)

It is easy to verify that for 0 < λ < 1 and sufficiently large n,

λ

2(1− λ)
≤ [λn] + 1

n− [λn] ≤
3λ

2(1− λ)
.(4.10)

By σ
(1)
n (v) = o(1) as n→∞ and (4.10), for all 0 < λ < 1,

lim
n→∞

[λn] + 1

n− [λn]
³
σ(1)n (v)− σ

(1)
[λn](v)

´
= 0.(4.11)

By (4.9) and (4.10), we have

vn − σ(1)n (v) ≥ [λn] + 1

n− [λn]
³
σ(1)n (v)− σ

(1)
[λn](v)

´
+ min
[λn]+1≤k≤n

(vn − vk).

(4.12)

Taking lim inf of both sides of (4.12), we have

lim inf
n

(vn − σ(1)n (v)) ≥ lim inf
n

[λn] + 1

n− [λn]
³
σ(1)n (v)− σ

(1)
[λn](v)

´
+ lim inf

n
min

[λn]+1≤k≤n
(vn − vk).(4.13)
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The inequality (4.13) becomes

lim inf
n

(vn − σ(1)n (v)) ≥ lim inf
n

min
[λn]+1≤k≤n

(vn − vk)(4.14)

by (4.11).

Taking λ→ 1− in (4.14), we have

lim inf
n

(vn − σ(1)n (v)) ≥ 0(4.15)

by (2.3).

Combining (4.8) and (4.15) yields that vn = o(1) as n→∞. Since (un)
is Abel summable to s and vn = o(1) as n → ∞, limn un = s by Tauber’s
second theorem [12]. This completes the proof. 2

Using Theorem 1.1, we show that slow decrease of (un) is also a Taube-
rian condition for (A,m) summability method.

Theorem 4.1. If (un) is (A,m) summable to s and slowly decreasing, then
limn un = s.

Proof. Let (un) be slowly decreasing. Then, we have vn ≥ −C for some

C by Lemma 3.2. Since n(σ
(1)
n (u) − σ

(1)
n−1) = vn for all nonnegative n, we

conclude that (σ
(1)
n (u)) is slowly decreasing if we replace un in (2.4) by

σ
(1)
n (u).

It easily follows that (σ
(m)
n (u)) is slowly decreasing for each nonnegative

m.

Since (un) is (A,m) summable to s, we have

lim
n

σ(m)n (u) = s(4.16)

by Theorem 1.1. By definition, we have

σ(m)n (u) = σ(1)n (σ(m−1)(u)).(4.17)

From (4.16) and (4.17) it follows that (un) is (A,m − 1) summable to
s. Since (σ

(m−1)
n (u)) is slowly decreasing, we have limn σ

(m−1)
n (u) = s by

Theorem 1.1. Continuing in this way, we obtain that limn un = s. 2
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