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RAMÓN MENDOZA
UNIVERSIDADE FEDERAL DE PERNAMBUCO, BRASIL

and
JACQUELINE ROJAS ∗

UNIVERSIDADE FEDERAL DA PARAÍBA, BRASIL
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Abstract

The translation of the observable, position and momentum, of a
given particle in the real line, at a certain time t, from Classical Me-
chanics, into the operators, position and momentum, in Quantum
Mechanics, gives us the inspiration to make a proof of the existence
of the Fourier’s Inverse Transform, using algebraic relations involv-
ing these operators (position and momentum), a few of Linear Algebra
and Analysis, without resorting to the classical technics like Fubini’s
Theorem and Lebesgue’s Dominated Convergence Theorem.
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1. Introduction

As commented in the abstract, the inspiration to make an accessible, es-
sentially algebraic proof of the existence of the Fourier inverse operator,
comes from the notions of position and momentum in Classical Mechanics
and their corresponding operators in Quantum Mechanics. In fact, on the
one hand it is known that the eigenvalues of the operators, position and
momentum, (see (3.1) and (3.2) for their precise definitions) must be real
numbers, since these correspond to the position and momentum of a given
particle in the real line, at time t, but on the other hand, the position oper-
ator, P , (in (3.1)), does not has eigenvectors and the momentum operator,
M , (in (3.2)), has the C∞- function fλ(x) = eiλx as an eigenvector associ-
ated to the complex eigenvalue λ. So, from a physical point of view, it is
of interest to have an extension, P, of the position operator, P , and to do
a very careful choice of the domain for the extension, M, of the momen-
tum operator, M , in order to get only real eigenvalues for their respective
extensions. With this aim we devote Section 3 to study the eigenvector-
eigenvalue problem for this operators and their extensions. At this point
we show in Proposition 3.1 that all real number λ is an eigenvalue of P,
whose eigenspace, Eλ(P), is a one-dimensional vector space.

The largest part of this paper is devoted to prove the following key
equation, Λ2 = I, where Λ denotes the Fourier transform operator and I
is “almost” the identity operator. In fact I2 is the identity operator as can
be easily seen from its definition in (4.1). At last but not least, we explore
the extension of the Fourier transform to L2(R) (See subsection 5.2). In
particular, the existence of the inverse of Λ, (cf. Theorem 4.7), in S, implies
the existence of the Fourier inverse transform, in L2(R). In the last section
we also explore the extension F , as in (2.2), of the Fourier transform Λ,
in (2.1). Finally in Remark 5.3, we point out the necessary modifications
which has be done to carry on the proof of the Theorem 4.7 for the Fourier
transform in Rn, (see (5.1)), as it was made in the one-dimensional case.

2. Notation and Preliminary Results

In this section we introduce the main spaces we shall deal with. From now
on, we consider complex-valued functions ϕ : R→ C.

• C∞(R), E(R) or E . By C∞(R) we mean the vector space of all in-
finitely differentiable functions ϕ : R → C. We use the notation E ,



A Quantum Mechanical Proof of the Fourier Inversion Formula 443

instead of C∞(R).

• C∞0 (R), D(R) or D. Let C∞0 (R) be the linear space of complex func-
tions ϕ ∈ E , with compact support in R. Each function in this space
is called a test function and such function constitute the base for the
study of the modern distribution theory. (See [4], [7] ).

• S(R) or S. A function ϕ : R → C, is said to be of rapid descent at
infinity, if ϕ ∈ E and

|tmϕ(k)(t)| ≤ Cmk, −∞ < t <∞,

where m and k run through all nonnegative integers, and Cmk are
constants, which only depends upon m and k.
Let S(R) denote the linear subspace of E formed by those functions
ϕ that are rapidly descent at infinity. S(R) is called the Schwartz’s
space and we will denote it by S instead of S(R).

It is well known that S is one of the best spaces where anyone can study
the classical Fourier transform, as it is usually defined:

Λ : S → S, ϕ 7→ Λ(ϕ),

where,

Λ(ϕ)(ξ) =
1√
2π

Z ∞
−∞

e−itξϕ(t)dt,(2.1)

and we call this function Λ the Fourier transform operator, on S. For
details see ([2], [6]), for instance.

2.1. Linear Algebra

Let V be a complex vector space and denote by V the algebraic dual space
of V , that is, the space of all linear functional defined on V . (See [5]). For
example, if we have in mind the inclusions,

D ⊆ S ⊆ E ,

then, after taking the algebraic dual operation, we obtain,

E ⊆ S ⊆ D .
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Now, if the complex vector space V have an hermitian product, h·, ·i,
then we can see V as an extension of V . In fact it is enough to consider
the injective operator,

j : V → V , v 7→ j(v) = h·, vi,

where h·, vi denotes the linear functional on V , given by w 7→ hw, vi.
In the same direction let V and W be two vector spaces, over C, endowed
with their respective hermitian products, and let L : V → W be a linear
operator. Suppose that there exist a linear operator L+ : W → V such
that,

hLv,wi = hv, L+wi, ∀ v ∈ V, ∀ w ∈W.

The linear operator L+ is called the adjoint operator of L. Next, we can
define the linear operator,

L : V →W , ϕ 7→ L(ϕ) = ϕ ◦ L+.(2.2)

Since
L(h·, vi)(w) = h·, vi ◦ L+(w) = hL+w, vi = hw,Lvi,

we conclude that the following diagram is commutative:

V
L−→ W

j

⏐⏐⏐⏐y
⏐⏐⏐⏐yj

V
L−→ W

3. A Problem of Eigenvalues and Eigenvectors

It is known, from Classical Mechanics, that the position of a particle in the
real line, as well as its momentum, at time t, are given by real numbers.
But in Quantum Mechanics the state of a particle, at time t, is given by a
function ψ ∈ L2(R), such that

R
R |ψ|2 <∞. On the other hand, the observ-

able operators, position and momentum, have the following interpretation:
let I ⊂ R be an interval. Then

R
I |ψ|2 is considered as the probability of

founding the particle in that interval I, at time t, and
R
I |Λψ|2 <∞ is the

probability that this particle has a given momentum in the interval I, at
time t, (see Section 5 for the extension of Λ to L2(R)).

After this considerations we introduce both, the position operator and
the momentum operator. See [3].
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In fact they are the linear operators, defined respectively, by

P : D→ D, ϕ 7→ Pϕ, with (Pϕ)(x) = xϕ(x), ∀ x ∈ R,(3.1)

and

M : S → S, ϕ 7→Mϕ = −iϕ0.(3.2)

Note that, we also can choice D or E as the domain of both operators
M and P , it will depend on our purposes.

3.1. The Eigenvalues of P

First of all we note that does not exist eigenvector solution, ϕ ∈ D, of the
equation,

Pϕ = λϕ, λ ∈ R.

It seems strange because from Quantic Mechanics, the eigenvectors of
P represent the state of a particle in the position λ. In order to get around
this difficulty we consider the extension operator P, of P , as follow: first
we compute the adjoint operator P+, of P , under the hermitian product

hf, gi =
Z ∞
−∞

f(t)g(t)dt, f, g ∈ D.(3.3)

Now we observe that,

hPϕ,ψi =
Z ∞
−∞

xϕ(x)ψ(x)dx =

Z ∞
−∞

ϕ(x)xψ(x)dx = hϕ,Pψi, ∀ ϕ,ψ ∈ D.

So the adjoint operator, P+, of P , do exist and P+ = P . Thus according
to (2.2) we get the extension P : D → D , given by Pϕ = ϕ ◦ P+ =
ϕ ◦ P. After this we propose to study the following extended eigenvalue-
eigenvector equation,

P(T ) = λT, T ∈ D , λ ∈ C.(3.4)

We begin by introducing the “object” delta of Dirac δλ, λ ∈ R. It is defined

by: δλ(t) =

(
0 , if t 6= λ

+∞ , if t = λ
and

Z ∞
−∞

δλ(t)dt = 1.

Curiously this strange mathematical “object” works out very well in
physical situations and in mathematics itself, although this “object” can
not be considered as a function in the classical sense. In spite of this we
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often call it: delta function of Dirac, concentred in λ, or Dirac δλ function.
The physicists regard the Dirac delta function δλ as a “state” in which the
particle is localized at the point λ ∈ R. Such “state” can be approximated
by a regular state ψ ∈ D, such that,

ψ (t) = 0, outside [λ− , λ+ ], for small > 0, and

Z
ψ = 1.

By tradition the Dirac delta function, concentred in zero, is denoted by δ,
that is δ0 = δ. More and much more deep information about the delta of
Dirac can be found in [1]. Nowadays, via distribution theory, see [7], the
Dirac delta function δλ is properly seen as a linear functional, and in this
paper, we will define it in the following way:

δλ : S −→ C
ϕ 7−→ δλ(ϕ) = ϕ(λ),

(3.5)

so we have that δλ belongs to S .

3.1. Proposition. Consider the notation as in (3.4) and (3.5). Then we
have:

1 λ ∈ C is an eigenvalue of P if and only if λ ∈ R.

2 Let Eλ(P) ⊂ D be the eigenspace of P, associated to λ ∈ R. Then
Eλ(P) is generated by δλ, that is Eλ(P) = [δλ].

Proof. First of all, if λ (real or complex) is an eigenvalue of P with
eigenvector T ∈ D , then P(T ) = λT and hence (T ◦ P )ϕ = λTϕ, for all
ϕ ∈ D. It follows that,

T ((P − λ)ϕ) = 0, ∀ ϕ ∈ D. ( )

1 . Suppose that λ is a complex number having a non-zero imaginary part,
and λ is an eigenvalue of P with eigenvector T ∈ D .

We observe that the function g(x) =
1

x− λ
belongs to E and gϕ ∈ D,

if ϕ ∈ D. Moreover ϕ = (P − λ)gϕ. Therefore, by ( ),

T (ϕ) = T ((P − λ)gϕ) = 0, ∀ ϕ ∈ D.

Thus, T ≡ 0.
2 . At first, we prove that
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P (δλ) = λδλ, λ ∈ R. In fact: by definition we have, P(δλ) = δλ ◦ P .
Hence,

(δλ ◦ P )(ϕ) = δλ(Pϕ) = Pϕ(λ) = λϕ(λ) = λδλ(ϕ), ∀ ϕ ∈ D.

Therefore, P(δλ) = λδλ and [δλ] ⊂ Eλ(P). Now let T belongs to D be an
eigenvector of P, associated to the eigenvalue λ ∈ R.

Next one notes that if ϕ ∈ D and verify the condition ϕ(λ) = 0, then
we can find ψ ∈ E such that ϕ = (P − λ)ψ. In fact, if ϕ belongs to D then
we have that ψ ∈ D, necessarily. Thus keeping in mind ( ) this implies
that

T (ϕ) = 0, ∀ ϕ ∈ D, such that ϕ(λ) = 0.(3.6)

In the general case we have,

ϕ = ϕ(λ) + (P − λ)ψ,

for some ψ ∈ E . Now let us consider θ ∈ D such that θ(λ) = 1. We multiply
the above equation by θ and we obtain:

θϕ = ϕ(λ)θ + (P − λ)(θψ).

Note that as much (1− θ)ϕ as eψ = (P −λ)(θψ) belong to D and vanish
at λ. Thus, it follows from (3.6) that T ((1− θ)ϕ) = T ( eψ) = 0. So we get:
T(ϕ) = T ((1−θ)ϕ+θϕ) = T (θϕ) = ϕ(λ)T (θ)+T ( eψ) = T (θ)δλ(ϕ).We left
to the reader the task of verifying that T (θ) = T (θ1), for every θ, θ1 ∈ D,
such that θ(λ) = θ1(λ) = 1.

Therefore T = T (θ)δλ and this show us that Eλ(P) ⊂ [δλ] and conclude
the proposition.

3.2. The Eigenvalues of M

As we have observed, we can consider the momentum operator as having
domain D,S or E . In this paper, when we defined this operator, we have
made the option by S to be the domain of M and next we show to the
reader that this is the best choice from the physical point of view.
In any case if we consider, D or S, as the domain ofM , then we use the her-
mitian product as defined in (3.3). It is not difficult to show that, M+, the
adjoint ofM , exist and is equal toM . Thus, we can consider the extension,
M, ofM , defined overD or S. Of course,M(ϕ) = ϕ◦M , according to (2.2).
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In order to study the eigenvalue-eigenvector problem with respect to
the operatorM, we begin noting that the map

· : E × D −→ D
(f, T ) 7−→ f · T,

where f · T (ϕ) = T (fϕ), for every ϕ ∈ D, turns D into an E-module. As
a consequence the following equation works out:

M(f · T ) =M(f) · T + f ·M(T ), ∀ f ∈ E , T ∈ D .(3.7)

After (3.7) it is easy to see that eiλxT belongs to the kernel ofM.
Over and above that, in an injective way, for each f ∈ E we associate,
Tf ∈ D , defined by,

Tf (ϕ) =

Z
ϕf, ∀ ϕ ∈ D.

Thus, we identify each function f ∈ E with Tf ∈ D .

For example, for each λ ∈ C, the function fλ(x) = eiλx, x ∈ R, is
such that, fλ ∈ E and M(fλ) = λfλ. Having in mind this identification
and the definition of M, we obtain M(Tfλ) = λT

fλ
, for each λ ∈ C and

fλ(x) = eiλx.

In fact,

M(Tfλ)(ϕ) = Tfλ(−iϕ0) =
Z
−iϕ0eiλx = λ

Z
ϕeiλx = λTfλϕ, ∀ ϕ ∈ D.

Now, with a focus on the next proposition, we present an auxiliary
lemma which describe the kernel ofM.

3.2. Lemma. M(T ) = 0 if and only if T ∈ [Te1].
Proof. First, remember that Te1 ∈ D , is the functional identified withe1 ∈ E .
We only prove the direct implication. So let T ∈ D , such thatM(T ) = 0.
Then T (Mϕ) = 0, ∀ ϕ ∈ D. Thence Tϕ0 = 0, for every ϕ ∈ D. It is well
known that if ϕ ∈ D, then there exist ψ ∈ D such that ϕ = ψ0, if and only

if

Z ∞
−∞

ϕ(t)dt = 0.

So let us take θ ∈ D such that
Z ∞
−∞

θ(x)dx = 1 and, for each ϕ ∈ D, consider
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the function eϕ = ϕ −
∙ Z ∞
−∞

ϕ(u)du

¸
θ. So eϕ ∈ D, and Z ∞

−∞
eϕ(u)du = 0.

Then there exist ψ ∈ D, such that ψ0 = eϕ. Thus T (eϕ) = T (ψ0) = 0.

It implies Tϕ =

∙ Z ∞
−∞

ϕ(u)du

¸
T (θ) = T (θ)e1(ϕ) = T (θ)Te1(ϕ), for every

ϕ ∈ D. Therefore, ifM(T ) = 0, then T = cTe1, for some constant c. In fact
this constant c is independent of the choice of θ ∈ D, such that

R
θ = 1.

3.3. Proposition. For each complex number λ, letEλ(M) be the eigenspace
associated to the eigenvalue λ, ofM.Then,

1 Eλ(M) = [Tfλ ], where fλ(x) = eiλx.

2 Tfλ ∈ S if and only if λ ∈ R.

Proof. 1 We have already proved the inclusion [Tfλ ] ⊂ Eλ(M). To prove
the opposite inclusion, we observe thatM(f−λT ) = 0. Then by Lemma 3.2,
we get f−λT = µTe1 for some constant µ ∈ C. Thus, T = µfλTe1 = µTfλ .

2 Let λ = a + ib ∈ C, such that Tfλ ∈ S and suppose that b 6= 0. Let
us take b > 0, (the case b < 0 is left to the reader). Thus fλ(x) = eiλx =
e−bxeiax. Next we are going consider the following function:

ψ(x) =

⎧⎪⎨⎪⎩
ebx if x ≤ −1
θ(x) if −1 ≤ x ≤ 1
0 if x ≥ 1

,

where θ is a C∞-function, defined in [−1, 1], that yields ψ in such a way
that ψ belongs to S. Now we can consider the function ϕ = ψe−iax, x ∈ R.
We have that ϕ ∈ S and

Tfλ(ϕ) =

Z ∞
−∞

fλ(x)ϕ(x)dx =

Z −1
−∞

dx+

Z 1

−1
θ(x)e−bxdx =∞,

and this implies that Tfλ it is a not well defined functional over S, that is
Tfλ 6∈ S and the Lemma is proved.

4. Fourier’s Inverse Transform

First let us consider the operator,

I : S → S, ϕ 7→ I(ϕ), where I(ϕ)(x) = ϕ(−x).(4.1)
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We have in mind to prove the equation,

Λ2 = I,(4.2)

where Λ denotes the Fourier transform operator. In order to do that we
need some auxiliary results.

4.1. Lemma. Let P,Q ∈ L(S). Then P = Q if and only if δλ◦P = δλ◦Q,
for all λ ∈ R.

Proof. Assume δλ ◦ P = δλ ◦ Q, for all λ ∈ R. Then, (δλ ◦ P )ϕ =
(δλ ◦Q)ϕ, ∀ ϕ ∈ S or yet,

(Pϕ)(λ) = (Qϕ)(λ), ∀ λ ∈ R, ∀ ϕ ∈ S.

Therefore P = Q.
Now, for each λ ∈ R we introduce the translation operator by λ:

τλ : S → S, ϕ 7→ τλ(ϕ),

where τλ(ϕ)(x) = ϕ(x− λ).

4.2. Lemma. Let P,Q ∈ L(S) and assume that,

P ◦ τλ = τ−λ ◦ P , Q ◦ τλ = τ−λ ◦Q, ∀ λ ∈ R,(4.3)

and
δ ◦ P = δ ◦Q.(4.4)

Then P = Q.

Proof. From (4.4) we have δ ◦ P ◦ τλ = δ ◦Q ◦ τλ. Now we apply (4.3) to
get, δ ◦ τ−λ ◦ P = δ ◦ τ−λ ◦Q, ∀ λ ∈ R. But,

(δ ◦ τ−λ)ϕ = δ(τ−λϕ) = (τ−λϕ)(0) = ϕ(λ) = δλ(ϕ), ∀ ϕ ∈ S.

Therefore, δ ◦ τ−λ = δλ and δλ ◦ P = δλ ◦Q, for all λ ∈ R. By Lemma 4.1
it follows that P = Q.

4.3. Lemma. For each λ ∈ R, let mλ : S → S be the multiplication
operator defined by: mλ(ϕ)(ξ) = e−iλξϕ(ξ). Then, Λ◦τλ = mλ◦Λ and Λ◦
mλ = τ−λ ◦ Λ.
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Proof. Straightforward.

4.4. Lemma. Notations as in (2.1), (3.1) and (3.2). Then, Λ ◦ P =
−M ◦ Λ and Λ ◦M = P ◦ Λ.

Proof. In fact,

"
(Λ ◦ P )(ϕ)

#
(ξ) = Λ(Pϕ)(ξ) =

1√
2π

Z ∞
−∞

e−ixξ(Pϕ)(x)dx

=
i√
2π

Z ∞
−∞

e−ixξ(−ix)ϕ(x)dx

=
i√
2π

Z ∞
−∞

∂

∂ξ
e−ixξϕ(x)dx

= i
∂

∂ξ
(Λϕ)(ξ) = (i

∂

∂ξ
◦ Λ)(ϕ)(ξ) = −[(M ◦ Λ)(ϕ)](ξ).

Next we prove that Λ ◦M = P ◦ Λ. We have,"
(Λ ◦M)ϕ

#
(ξ) = Λ(Mϕ)(ξ) =

1√
2π

Z ∞
−∞

e−ixξ(Mϕ)(x)dx

=
1√
2π

Z ∞
−∞

e−ixξ(−i∂ϕ
∂x
(x))dx

=
−i√
2π

Z ∞
−∞

e−ixξ
∂ϕ

∂x
(x)dx

=
ξ√
2π

Z ∞
−∞

e−ixξϕ(x)dx = ξΛϕ(ξ) = (P ◦ Λ)(ϕ)(ξ).

Now let us come back to the equation, Λ2 = I, in (4.2). For this we
study the operator δ ◦ Λ2 in the next Proposition.

4.5. Proposition. δ ◦ Λ2 = δ.

Proof. First of all, we prove that δ ◦ Λ2 belongs to kernel of P. In fact:
we know that P(T ) = T ◦ P , for all T ∈ D .

Then we must prove that P(δ ◦Λ2) = 0. But from Lemma 4.4 we have:
δ ◦ Λ2 ◦ P = δ ◦ Λ ◦ Λ ◦ P = δ ◦ Λ ◦ (−(M ◦ Λ)) = δ ◦ (−P ) ◦ Λ2.

On the other hand, δ ◦ (−P ) ◦ Λ2 = 0, thus

P(δ ◦ Λ2) = δ ◦ Λ2 ◦ P = δ ◦ (−P ) ◦ Λ2 = 0,
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and δ ◦ Λ2 ∈ ker(P). As ker(P) = [δ], we have

δ ◦ Λ2 = cδ, for some constant c.(4.5)

Next we prove that c = 1. Well, evaluating (4.5), at φ0 ∈ S, φ0(t) =
e−

t2

2 , t ∈ R, and using that φ0 is an eigenvector, of Λ, associated to the
eigenvalue λ = 1, it follows that,

(δ ◦ Λ2)φ0 = (δ ◦ Λ)(Λ(φ0)) = (δ ◦ Λ)(φ0) = δ(φ0) = 1 = c = cδ(φ0).

Therefore δ ◦ Λ2 = δ.

4.6. Corollary. Λ2 = I.

Proof. We can see, without difficulties, that δ ◦ I = δ. So it follows from
Proposition 4.5 that δ ◦ Λ2 = δ = δ ◦ I. On the other hand it is easy to
verify that

I ◦ τλ = τ−λ ◦ I, ∀ λ ∈ R.(4.6)

Moreover follows from Lemma 4.2 that

Λ2 ◦ τλ = τ−λ ◦ Λ2, ∀ λ ∈ R.(4.7)

Thus keeping in mind (4.6) and (4.7), we conclude from Lemma 4.3 that
Λ2 = I.

4.7. Theorem. There exist the Fourier’s inverse transform of Λ and
Λ−1 = Λ3.

Proof. After Corollary 4.1, we have Λ4 = 1S , where 1S is the identity
operator in S. Therefore Λ3 = Λ−1 is the Fourier’s inverse transform, as
we wanted!

Here we register the pioneer idea from A. Calderón1 that use the solution
space of the ordinary differential equation

y0 + ty = 0,(4.8)

to show that φ0(t) = e−
t2

2 is an eigenvector of the Fourier transform Λ.
Moreover, this computation reveal us a fine application of Quantum Me-
chanics in order to determine Λφ0.

1Alberto Calderón (1920 - 1998). Was born in Argentina. One of the most influential
mathematicians of the 20th century.
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It is well known that the solution space of (4.8) has dimension one and

that space is generated by the function φ0(t) = e−
t2

2 . Having in mind that
Mϕ = −iϕ0 and Pϕ(x) = xϕ(x), the equation (4.8) can be rewrite in the
form

iMφ+ Pφ = 0.(4.9)

If we apply Fourier transform, from (4.9), we get, iΛMφ + ΛPφ = 0.

Then, by Lemma 4.4, we have:

iM(Λφ) + P (Λφ) = 0.

By the fact solution space of (4.8) has dimension one, and that it is
generated by φ0(t), we have,

Λφ0(t) = cφ0(t), for some constant c.

Moreover, Λφ0(0) = c = 1.

5. Fourier Transforms

All the time in this paper, we have spoken about “the” Fourier transform.
Under certain point of view this is not so correct. In fact we can say that
there are several Fourier transforms, as we now explain.

At first we introduce the spaces, L1(R) and L2(R) . (See [2]).

L1(R) is the space of (class of) mesurable functions f : R → C, such
that |f | has finite Lebesgue integral over R. L1(R) is a Banach space.

L2(R) denotes the space of (class of) mesurable functions f : R → C,
such that |f |2 has finite Lebesgue integral over R. L2(R) is a vector space
and if f, g ∈ L2(R) we define an hermitian product and a norm,

(f, g) =

Z ∞
−∞

f(x)g(x)dx; |f | =
µZ ∞

−∞
|f(x)|2dx

¶1/2
, respectively.

With respect to this norm L2(R) is a complete metric space, that is,
a Hilbert space, also called space of square integrable functions. Note that
S ⊂ L1(R) ∩ L2(R) and S is dense in L2(R).
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5.1. Fourier Transform in L1(R)

If we use the rule in (2.1) we can associate to each function f ∈ L1(R) the
function Λf , with (Λf)(ξ) =

1√
2π

R∞
−∞ f(x)e−iξxdx.

After some computations it can be verified that Λf ∈ C0∞(R), the space
of continuous functions f : R → C, such that lim

|x|→±∞
f(x) = 0. Thus we

have the Fourier transform in L1(R), given by Λ : L1(R) → C0∞(R). For
details see [2].

5.2. Fourier Transform in L2(R)

L2(R) is a very good space to localize the observable, position and momen-
tum, in Quantum Mechanics. In despite of this we have some problems.
For example, the Fourier transform for L2-functions cannot be defined ac-
cording to (2.1). However, it is possible to overcome this difficulty by
invoking the density of S in L2(R). If f ∈ L2(R), there exist a sequence
(fn)n, fn ∈ S, ∀ n ∈ N, such that

fn → f, in L2(R).

Since (Λfn)n is a Cauchy sequence in the complete metric space L2(R)
it converges to some F ∈ L2(R). Thus it makes sense to define,eΛ : L2(R) −→ L2(R), f 7−→ eΛf, (eΛf)(ξ) = lim

n→∞
Λfn = F,

and call it the Fourier transform in L2(R). In fact, it is very simple to
prove that the Fourier transform, for L2-functions, is a very well defined
linear operator. But the Fourier transform of a square integrable func-
tion it is not punctually defined, unlike the Fourier transform of integrable
functions. Thus we can say that the L2-Fourier transform is one another
Fourier transform. For details see [6].

5.3. Fourier Transform in S

It is easy to show that the adjoint operator, Λ+, of the Fourier transform
Λ : S → S, defined in (2.1), do there exist and it is equal to Λ3, making it
clear,

(Λ+ϕ)(ξ) =
1√
2π

Z ∞
−∞

eixξϕ(x)dx.

So, according to (2.2) we can consider the generalized Fourier transform
F : S → S , given by F(T ) = T ◦ Λ+ = T ◦ Λ3.
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Next we observe that the hermitian product in L2(R), allow us to iden-
tify the function f ∈ L2(R), with the functional h·, fi ∈ S . In particulareΛf ∈ L2(R) can be identified with h·, eΛfi ∈ S . Moreover it can be showed
that

F(h·, fi) = h·, eΛfi, ∀ f ∈ L2(R).
So, under identification, we have F(f) = eΛf, for every f ∈ L2(R).

It is worthwhile to note that there exist functions that does not belong to

L2(R), or even L1(R), like the Heaviside function,H(x) =
(
1, if x > 0
0, if x < 0

but in spite of this, it is possible to compute their generalized Fourier trans-
form. For example, under the identification of the Heaviside function, H,
with h·,Hi ∈ S , we have

F(H) = i√
2π

(
1

x

)
+

√
2π

2
δ,

where { 1x} is the Cauchy principal value distribution. In fact, it can be
defined by (

1

x

)
(ϕ) =

⎧⎨⎩ 0 if ϕ is evenZ
ϕ(x)

x
dx if ϕ is odd

.

Let us consider the Fourier transform of functions defined in Rn, that
is, we take functions ϕ : Rn → C in the space S(Rn) and calculate its
Fourier transform by defining:

(Λϕ)(ξ) =
1

(2π)n/2

Z
e−ihξ,xiϕ(x) dx,(5.1)

where h·, ·i denotes the inner product in Rn. See [6] for details.
As we have made in Section 4, it is possible to prove that Λ2 = IS(Rn).
Here Λ is the operator we have defined in (5.1) and I(x) = −x, for every
x ∈ Rn. In order to do this, we list some changes that have to be considered
and left the verifications to the reader.

• The previous position and momentum operators must be replaced
for Pk,Mk, k = 1, . . . , n, where (Pkϕ)(x) = xkϕ,Mkϕ = −i∂kϕ, x =
(x1, . . . , xn) and ∂k =

∂

∂xk
, for each ϕ ∈ S(Rn).

• Lemma 4.4 becomes Λ ◦Pk = −Mk ◦Λ and Λ ◦Mk = Pk ◦Λ, for each
k ∈ {1, . . . , n}.
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• The key fact E0(P) = [δ], in Proposition 3.1 that we have used to
prove that Λ4 = I, now correspond to

n\
k=1

E0(Pk) = [δ],

with Pk(T ) = T ◦ Pk, k = 1, . . . , n. It is not difficult to prove this
equality. We prove the inclusion

n\
k=1

E0(Pk) ⊂ [δ].

Let T ∈ Tn
k=1E0(Pk) and ϕ ∈ S(Rn). We choose ψk ∈ E(Rn), such

that

ϕ = ϕ(0) +
nX

k=1

Pk(ψk).

Next, take θϕ ∈ C∞0 (Rn) such that θϕ(x) = 1, for all x ∈ supp(ϕ) ∪
{0}.
We have,

ϕ = ϕθϕ +
nX

k=1

Pk(ψkθϕ).

Then,

T (ϕ) = ϕ(0)T (θϕ) +
nX

k=1

Pk(T )(ψkθϕ) = T (θϕ)ϕ(0) = T (θϕ)δ(ϕ).

It is crucial to understand that the constant T (θϕ) is independent of
ϕ, indeed!

• The function φ0(x) = e−
|x|2
2 , |x|2 =

nX
k=1

x2k, is an eigenvector of Λ

associated to eigenvalue λ = 1.
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