Proyecciones Journal of Mathematics Vol. 30, N^o 3, pp. 285-294, December 2011. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172011000300001

Nonlinear Bessel potentials and generalizations of the Kato class

RENÉ ERLÍN CASTILLO UNIVERSIDAD NACIONAL DE COLOMBIA, COLOMBIA Received : January 2011. Accepted : November 2011

Abstract

We study the scale of function spaces M_p introduced by Zamboni. For these spaces, we get a characterization in terms of nonlinear Bessel potentials. This result is based on a known characterization of the Kato class $K_{n,s}$ of order s in terms of Bessel potentials and the space of bounded uniformly continuous functions.

2000 Mathematics subject Classification 31C45. Key words and phrases. Kato class, Bessel potentials, nonlinear potential.

1. Introduction

The Kato class K_n was introduced and studied by Aizenman and Simon (see [7] and [2]). For $n \ge 3$, it consists of locally integrable functions f on \mathbf{R}^n such that

$$\begin{split} \lim_{r \to 0} \sup_{x \in \mathbf{R}^{\mathbf{n}}} \int_{B(x,r)} \frac{|f(y)|}{|x-y|^{n-2}} dy = 0. \\ \text{For } 1$$
the class M_p of functions f such that

$$\sup_{x \in \mathbf{R}^n} \left\{ \int_{B(x,r)} \frac{1}{|x-y|^{n-1}} \left(\int_{B(x,r)} \frac{|f(z)|}{|y-z|^{n-1}} dz \right)^{\frac{1}{p-1}} dy \right\}^{p-1} < \infty,$$

and the class M_p of functions f such that $f \in M_p$ and

$$\lim_{r \to 0} \sup_{x \in \mathbf{R}^n} \left\{ \int_{B(x,r)} \frac{1}{|x-y|^{n-1}} \left(\int_{B(x,r)} \frac{|f(z)|}{|y-z|^{n-1}} dz \right)^{\frac{1}{p-1}} dy \right\}^{p-1} = 0.$$

In [3], Davies and Hinz introduced the scale $K_{n,s}$ of the Kato classes of order s > 0. It was shown by Gulisashvili (see [4] Theorem 1) that for a locally integrable function f the following conditions are equivalent:

(a) $f \in K_{n,s}$ for s > 0; and $\lim_{\alpha \to 0^+} \alpha^s \|J^{-s}(|f|)_{\alpha}\|_{\infty} = 0;$ (b) $J^{-s}|f| \in L_{\infty}$ (c) $J^{-s}|f| \in BUC.$

In (a) and (c), the symbol J^{-s} stands for the Bessel potential of order s, BUC denotes the space of bounded uniformly continuous functions on \mathbf{R}^n , and $|f|_{\alpha}(x) = |f(\alpha x)|, x \in \mathbf{R}^n, \alpha > 0$. Previously, this result was obtained for the Kato class K_n and the Kato class of measures K_n , in 6 and 5, respectively.

In the present paper, we generalize the theorem formulated above for the classes M_p and M_p , using the nonlinear Bessel potentials (see Theorems 1 and 2 below)

2. Definitions and Notation

In this section, we gather definitions and notation that will be used throughout the paper. We also include several simple lemmas. By $L^1_{loc}(\mathbf{R}^n)$ we will denote the space of functions which are locally integrable on \mathbb{R}^n , and by $L^1_{loc,u}$ the space of functions f such that

 $\sup_{x \in \mathbf{R}^n} \int_{B(x,1)} |f(y)| \, dy < \infty.$

DEFINITION 1. Let $f \in L^1_{loc}(\mathbf{R}^n)$. For any 1 and <math>r > 0, we set

$$\Phi(r) = \sup_{x \in \mathbf{R}^n} \left(\int_{B(x,r)} \frac{1}{|x-y|^{n-1}} \left(\int_{B(x,r)} \frac{|f(z)|dz}{|z-y|^{n-1}} \right)^{\frac{1}{p-1}} dy \right)^{p-1},$$

where $B(x,r) = \{y : |x-y| < r\}.$

where $D(x,r) = \{y : |x-y| < r\}$. We say that f belongs to the space $\tilde{M}_p(\mathbf{R}^n)$, if $\Phi(r) < \infty$ for all r > 0.

DEFINITION 2. We say that a function $f \in M_p(\mathbf{R}^n)$ if $\lim_{r\to 0} \Phi(r) = 0.$

We are now ready to formulate some simple properties of the classes M_p and \tilde{M}_p .

LEMMA 1. (See [9], p. 151) For 1 , we have $(i) <math>M_p(\mathbf{R}^n) \subset \tilde{M}_p(\mathbf{R}^n)$, and (ii) $M_2(\mathbf{R}^n) = K_n$.

From Lemma 1 we conclude that both $M_p(\mathbf{R}^n)$ and $M_p(\mathbf{R}^n)$ are generalizations of K_n .

REMARK 1. The following example shows that K_n is properly contained in $M_p(\mathbf{R}^n)$ for p > 2. It is known that the function $f(x) = |x|^{-2}$ is not in the Kato class K_n . However, $f \in M_p$. Indeed,

$$(2.1)\lim_{r \to 0} \sup_{x} \left\{ \int_{B(x,r)} \frac{1}{|x-y|^{n-2}} \left(\int_{B(x,r)} \frac{dz}{|z|^2 |z-y|^{n-1}} \right)^{\frac{1}{p-1}} dy \right\}^{p-1} = 0.$$

This can be shown by splitting the domain of integration in the interior integral into the following three parts $B(x,r) \cap \{|z| < \frac{1}{2} |y|\}$, $B(x,r) \cap \{\frac{1}{2} |y| \le |z| \le \frac{3}{2} |y|\}$ and $B(x,r) \cap \{|z| > \frac{3}{2} |y|\}$. After routine calculations we see that

 $\int_{B(x,r)} \frac{dz}{|z|^2 |z-y|^{n-1}}$ is majorized by $C|y|^{-1}$. Finally we have $C \sup_x \left\{ \int_{B(x,r)} \frac{dy}{|y|^{\frac{1}{p-1}} |x-y|^{n-1}} \right\}^{p-1} \to 0 \quad as \quad r \to 0,$ this shows that (2.1) holds. Thus, $f \in \bigcap_{p>2} M_p$.

REMARK 2. (i) For 0 < r < 1, it is not hard to check that for 1 the expression

$$\|f\|_{\tilde{M}_{p}(\mathbf{R}^{n})} = \sup_{x \in \mathbf{R}^{n}} \left(\int_{B(x,1)} \frac{1}{|x-y|^{n-1}} \left(\int_{B(x,1)} \frac{|f(z)|}{|z-y|^{n-1}} dz \right)^{\frac{1}{p-1}} dy \right)^{p-1}$$
(2.2)

defines a norm on $\tilde{M}_p(\mathbf{R}^n)$. (ii) For p > 2, the expression (2.2) satisfies the following inequality.

(2.3)
$$||f + g||_{\tilde{M}_p(\mathbf{R}^n)} \le 2^{p-2} \Big(||f||_{\tilde{M}_p(\mathbf{R}^n)} + ||g||_{\tilde{M}_p(\mathbf{R}^n)} \Big),$$

for all f and g in $\tilde{M}_p(\mathbf{R}^n)$. If U is a neighborhood of 0, from (2.3) we have $2^{p-1}U + 2^{p-1}U \subset U$, then $\tilde{M}_p(\mathbf{R}^n)$ is a topological vector space.

LEMMA 2. $\tilde{M}_p(\mathbf{R}^n) \subset L^1_{loc,u}(\mathbf{R}^n)$ for 1 .

Proof. Let $f \in \tilde{M}_p(\mathbf{R}^n)$, and fix $r_0 > 0$. Then there exists a positive constant C such that $\Phi(r_0) \leq C$. It follows that

$$\sup_{x \in \mathbf{R}^{n}} \left(\int_{B(x,r_{0})} \frac{1}{|x-y|^{n-1}} \left(\int_{B(x,r_{0})} \frac{f(z)}{|x-y|^{n-1}} dz \right)^{\frac{1}{p-1}} dy \right)^{p-1} \\ \ge \sup_{x \in \mathbf{R}^{n}} \left(\int_{B(x,r_{0})} \frac{dy}{r_{0}^{n-1}} \left(\int_{B(x,r_{0})} \frac{f(z)}{(2r_{0})^{n-1}} dz \right)^{\frac{1}{p-1}} \right)^{p-1} \\ \ge \sup_{x \in \mathbf{R}^{n}} \left(\frac{1}{2r_{0}} \right)^{n-1} \left(\frac{m(B(x,r_{0}))}{r_{0}^{n-1}} \right)^{p-1} \int_{B(x,r_{0})} f(z) dz.$$

Therefore

 $\sup_{x \in \mathbf{R}^n} \int_{B(x,r_0)} f(z) \, dz < BC,$

where

$$B = (2r_0)^{n-1} (r_0 m(B(0,1)))^{p-1}.$$

Finally, let $B(x,1) \subseteq \bigcup_{k=1}^n B(x_k,r_0)$, then
 $\sup_{x \in \mathbf{R}^n} \int_{B(x,1)} f(z) dz \leq \sum_{k=1}^n \sup_{x \in \mathbf{R}^n} \int_{B(x_k,r_0)} f(z) dz,$

 \mathbf{SO}

 $\sup_{x \in \mathbf{R}^n} \int_{B(x,1)} f(z) \, dz < \infty$

therefore

 $\tilde{M}_p(\mathbf{R}^n) \subset L^1_{loc,u}(\mathbf{R}^n).$

LEMMA 3. For $1 , <math>\tilde{M}_p(\mathcal{R}^n)$ is a complete space.

Proof. Let $\{f_n\}_{n \in \mathcal{N}}$ be a Cauchy sequence in $\overline{B}(0,r) = \{f \in \tilde{M}_p(\mathcal{R}^n) : f_{\tilde{M}_p(\mathcal{R}^n)} \leq r\}.$

By Lemma 2, $\{f_n\}_{n \in \mathcal{N}}$ is a Cauchy sequence in $L^1_{loc,u}(\mathcal{R}^n)$. Since this space is complete, there exists a function $f \in L^1_{loc,u}(\mathcal{R}^n)$ such that $f_n \to f$ in $L^1_{loc,u}(\mathcal{R}^n)$.

By Fatous's Lemma, we have $f_{\tilde{M}_p(\mathcal{R}^n)} \leq \liminf f_{n,\tilde{M}_p(\mathcal{R}^n)} \leq r$. Thus $f \in \overline{B}(0,r)$, which means that $\overline{B}(0,r)$ is complete with respect to the topology generated by $L^1_{loc,u}(\mathcal{R}^n)$ - norm. By Corollary 2 of Proposition 9 in [4, Chapter III § 3, no.5] we obtain the assertion. \Box

LEMMA 4. If $1 , then <math>M_p(\mathbf{R}^n)$ is closed in $M_p(\mathbf{R}^n)$.

Proof. Let us define the map $\varphi : \tilde{M}_p(\mathbf{R}^n) \to [0,\infty)$ by $\varphi(f) = \lim_{r \to 0} \phi_f(r)$ (see definition 1). It is not hard to prove that the family $\{\varphi_r\}_{r>0}$ where $\varphi_r(f) = \phi_f(r)$ is equicontinuous and $\varphi_r \to \varphi$ pointwise as $r \to 0$. Since $M_p(\mathbf{R}^n) = \varphi^{-1}(0)$. We obtain the result. \Box

Nonlinear Bessel Potentials

In this section, we gather some well-known results concerning Riesz and Bessel potentials (see, e.g., [8]). Let

$$G_{\alpha}(x) = \frac{1}{(2\pi)^{\frac{n}{2}} 2^{\frac{\alpha}{2}} \Gamma(\frac{\alpha}{2})} \int_{0}^{\infty} t^{\frac{\alpha-n}{2}} e^{-\frac{|x|^{2}}{2t} - \frac{t}{2}} \frac{dt}{t},$$

denote the Bessel kernel of order $\alpha > 0$. For more information on the Bessel kernel, we refer the reader to [8], Chapter 5.

DEFINITION 3. For any $f \in L^1_{loc}(\mathbf{R}^n)$, and $\alpha > 0$, the function

```
G_{\alpha} * (G_{\alpha} * f)^{\frac{1}{p-1}}
```

is called the nonlinear Bessel potential of f, (see [1], p. 21).

The symbol I_{α} will stand for the Riesz potential kernel which is defined as follows:

(2.4)
$$I_{\alpha}(x) = \frac{\gamma_{\alpha}}{|x|^{n-\alpha}},$$

where γ_{α} is a certain constant (see [8], section V.1). It is Known that

(2.5)
$$I_{\alpha}(x) = \frac{1}{(2\pi)^{\frac{n}{2}} 2^{\frac{\alpha}{2}} \Gamma(\frac{\alpha}{2})} \int_{0}^{\infty} t^{\frac{\alpha-n}{2}} e^{-\frac{\pi|x|^{2}}{2t}} \frac{dt}{t},$$

where $0 < \alpha < n$. We have from (2.3) and (2.4) that

(2.6)
$$0 < G_{\alpha}(x) < I_{\alpha}(x) \text{ for } 0 < \alpha < n.$$

It is known that the local behavior of the Bessel potential kernel and the corresponding Riesz potential kernel is the same for $0 < \alpha \leq n$. It is also known that the Bessel potential kernels decay exponentially at infinity. More exactly, the following estimates holds: if $0 < \alpha < n$, then there exist $C_{\alpha} > 0$ and $\tilde{C}_{\alpha} > 0$ such that

(2.7)
$$\tilde{C}_{\alpha} |x|^{\alpha - n} \le G_{\alpha}(x) \le C_{\alpha} |x|^{\alpha - n},$$

for all x with 0 < |x| < 1. On the other hand, for every $\alpha > 0$ we have

(2.8)
$$G_{\alpha}(x) \le C_{\alpha} e^{-c|x|}$$

for all $x \in \mathbf{R}^n$ with |x| > 1. We have from (2.7) and (2.8) that for all x with $0 < |x| < \infty$,

(2.9)
$$G_{\alpha}(x) \le C_{\alpha} \left(\frac{\chi_{B(0,1)}(x)}{|x|^{n-\alpha}} + e^{-c|x|} \right).$$

Main Results

In this section we will give a characterization of the classes $M_p(\mathbf{R}^n)$ and $M_p(\mathbf{R}^n)$ in terms of nonlinear Bessel potentials.

REMARK 3. It is not hard to prove that the following are equivalent (a) $f \in M_p(\mathbf{R}^n),$

(b) $\lim_{r \to 0^+} \sup_{x \in \mathbf{R}^n} \int_{|y-x| \le r} \frac{1}{|x-y|^{n-1}} \left(\int_{|y-x| \le 1} \frac{|f(z)|}{|y-z|^{n-1}} dz \right)^{\frac{1}{p-1}} dy = 0,$ (c) $\lim_{r \to 0^+} \sup_{x \in \mathbf{R}^n} \int_{|y-x| \le r} \frac{1}{|x-y|^{n-1}} \left(\int_{\mathbf{R}^n} G_1(y-z) |f(z)| dz \right)^{\frac{1}{p-1}} = 0.$

THEOREM 1. Let $f \in L^1_{loc}(\mathbf{R}^n)$, and $1 . Then <math>f \in \tilde{M}_p(\mathbf{R}^n)$ if and only if $\sup_{x \in \mathbf{R}^n} \{G_1 * (G_1 * |f|)^{\frac{1}{p-1}}\} < \infty$.

Proof. Let $f \in \tilde{M}_p(\mathbb{R}^n)$, $G_{in} = \chi_{B(0,1)}G_1$ and $G_{out} = \chi_{\mathbb{R}^n|B(0,1)}G_1$. Since $G_1 = G_{in} + G_{out}$ and using (2.9), we have $\sup_{x \in \mathbf{R}^n} \{G_1 * (G_1 * G_1)\}$ $|f|)^{\frac{1}{p-1}}(x)$ $= \sup_{x \in \mathbf{R}^n} \{ (G_{in} + G_{out}) * (G_1 * |f|)^{\frac{1}{p-1}}(x) \}$ $\leq \sup_{x \in \mathbf{R}^n} \{ G_{in} * (G_1 * |f|)^{\frac{1}{p-1}}(x) \}$ + sup_{x \in **R**ⁿ} {G_{out} * (G₁ * |f|)¹/_{p-1}(x)} $= \sup_{x \in \mathbf{R}^n} \{ G_{in} * [(G_{in} + G_{out}) * |f|]^{\frac{1}{p-1}}(x) \}$ $+ \sup_{x \in \mathbf{R}^n} \{ G_{out} * (G_1 * |f|)^{\frac{1}{p-1}}(x) \}$ $\leq \sup_{x \in \mathbf{R}^n} \{ G_{in} * (G_{in} * |f|)^{\frac{1}{p-1}}(x) \}$ + sup_{x∈**R**ⁿ} {G_{out} * (G₁ * |f|)¹/_{p-1}(x)} $= \sup_{x \in \mathbf{R}^n} \int_{\mathbf{R}^n} G_{in}(x-y) \left(\int_{\mathbf{R}^n} G_{in}(y-z) |f(z)| dz \right)^{\frac{1}{p-1}} dy$ $+\sup_{x\in\mathbf{R}^n}\int_{\mathbf{R}^n}G_{in}(x-y)\left(\int_{\mathbf{R}^n}G_{out}(y-z)|f(z)|dz\right)^{\frac{1}{p-1}}dy$ $+\sup_{x\in\mathbf{R}^n}\int_{\mathbf{R}^n}G_{out}(x-y)\left(\int_{\mathbf{R}^n}G_1(y-z)|f(z)|dz\right)^{\frac{1}{p-1}}dy$ $= \sup_{x \in \mathbf{R}^n} \int_{\mathbf{R}^n} \chi_{B(0,1)} G_1(x-y) \left(\int_{\mathbf{R}^n} \chi_{B(0,1)} G_1(x-y) |f(z)| dz \right)^{\frac{1}{p-1}} dy$ $+\sup_{x\in\mathbf{R}^{n}}\int_{\mathbf{R}^{n}}\chi_{B(0,1)}G_{1}(x-y)\left(\int_{\mathbf{R}^{n}}\chi_{\mathbf{R}^{n}|B(0,1)}(y-z)G_{1}(y-z)|f(z)|dz\right)^{\frac{1}{p-1}}dy$ + sup_{x \in \mathbf{R}^{n}} \int_{\mathbf{R}^{n}} \chi_{\mathbf{R}^{n}|B(0,1)}(x-y) G_{1}(x-y) \left(\int_{\mathbf{R}^{n}} G_{1}(y-z)|f(z)|dz\right)^{\frac{1}{p-1}} dy $= \sup_{x \in \mathbf{R}^n} \int_{B(x,1)} G_1(x-y) \left(\int_{B(y,1)} G_1(y-z) |f(z)| dz \right)^{\frac{1}{p-1}} dy$ + sup_{x \in \mathbf{R}^{n}} \int_{B(x,1)} G_{1}(x-y) \left(\int_{\mathbf{R}^{n}|B(y,1)} G_{1}(y-z)|f(z)|dz \right)^{\frac{1}{p-1}} dy + sup_{x \in \mathbf{R}^n} \int_{\mathbf{R}^n | B(x,1)} G_1(x-y) \left(\int_{\mathbf{R}^n} G_1(y-z) | f(z) | dz \right)^{\frac{1}{p-1}} dy

by (2.9) we have

$$\begin{split} \sup_{x \in \mathbf{R}^{n}} \{G_{1} * (G_{1} * |f|)^{\frac{1}{p-1}}(x)\} \\ &\leq \sup_{x \in \mathbf{R}^{n}} \int_{B(x,1)} \frac{1}{|x-y|^{n-1}} \left(\int_{B(y,1)} \frac{|f(z)|}{|y-z|^{n-1}} dz \right)^{\frac{1}{p-1}} \\ &+ \sup_{x \in \mathbf{R}^{n}} \int_{B(x,1)} \frac{1}{|x-y|^{n-1}} \left(\int_{\mathbf{R}^{n}|B(y,1)} e^{-|y-z|} |f(z)| dz \right)^{\frac{1}{p-1}} dy \\ &+ \sup_{x \in \mathbf{R}^{n}} \int_{\mathbf{R}^{n}|B(x,1)} e^{-|y-z|} \left(\int_{\mathbf{R}^{n}} G_{1}(y-z)|f(z)| dz \right)^{\frac{1}{p-1}} dy \\ &\leq \sup_{x \in \mathbf{R}^{n}} \int_{B(x,1)} \frac{1}{|x-y|^{n-1}} \left(\int_{\mathbf{R}^{n}|B(y,1)} \frac{|f(z)|}{|y-z|^{n-1}} dz \right)^{\frac{1}{p-1}} dy \end{split}$$

$$+ e^{-1} \sup_{x \in \mathbf{R}^{n}} \int_{B(x,1)} \frac{1}{|x-y|^{n-1}} \left(\int_{\mathbf{R}^{n}|B(y,1)} |f(z)| dz \right)^{\frac{1}{p-1}} dy + \sup_{x \in \mathbf{R}^{n}} \int_{\mathbf{R}^{n}|B(x,1)} e^{-|x-y|} \left(\int_{\mathbf{R}^{n}} |f(z)| dz \right)^{\frac{1}{p-1}} dy < \infty.$$

To prove the sufficiency in Theorem 1, let us assume that $\sup_{x \in \mathbf{R}^n} G_1 * (G_1 * |f|)^{\frac{1}{p-1}}(x) < \infty$ and 0 < r < 1. Then (2.7) gives

$$C_{p} \sup_{x \in \mathbf{R}^{n}} \int_{\mathbf{R}^{n}} \frac{\chi_{B(0,r)}(x-y)}{|x-y|^{n-1}} \left(\int_{\mathbf{R}^{n}} \frac{\chi_{B(0,r)}(y-z)f(z)}{|y-z|^{n-1}} dz \right)^{\frac{1}{p-1}} dy$$

$$\leq \sup_{x \in \mathbf{R}^{n}} \int_{\mathbf{R}^{n}} G_{1}(x-y) \left(\int_{\mathbf{R}^{n}} G_{1}(y-z) f(z) dz \right)^{\frac{1}{p-1}} dy < \infty,$$

therefore, $f \in \tilde{M}_p(\mathbf{R}^n)$.

This completes the proof of Theorem 1.

THEOREM 2. For $1 , then <math>f \in M_p(\mathbf{R}^n)$ if and only if $G_1 * (G_1 * |f|)^{\frac{1}{p-1}} \in BUC.$

Proof. Let $f \in M_p(\mathbf{R}^n)$, and φ be any function in $C_c(\mathbf{R}^n)$ such that

(2.10)
$$\varphi(x) = \begin{cases} 1 & \text{if } |x| \le 1/2, \\ 0 & \text{if } |x| \ge 1 \end{cases}$$

with $0 \le \varphi(x) \le 1$ for all $x \in \mathbf{R}^n$ and $spt \ \varphi \subseteq B(0,1)$.

Let us define $G_{in,\alpha} = \varphi(\frac{1}{\alpha}\cdot)G_1$ and $G_{out,\alpha} = (1 - \varphi(\frac{1}{\alpha}\cdot))G_1$. Observe that $G_{out,\alpha}$ is a continuous function. We claim that $G_{out,\alpha}*(G_1*|f|)^{\frac{1}{p-1}} \in BUC$ for 1 , to prove this let us consider

$$\sup_{x \in \mathbf{R}^n} \left| G_{out,\alpha} * (G_1 * |f|)^{\frac{1}{p-1}} (x+h) - G_{out,\alpha} * (G_1 * |f|)^{\frac{1}{p-1}} (x) \right|$$

=
$$\sup_{x \in \mathbf{R}^n} \left| \int_{\mathbf{R}^n} \left[G_{out,\alpha} (x+h-y) - G_{out,\alpha} (x-y) \right] (G_1 * |f|)^{\frac{1}{p-1}} (y) dy \right| = I$$

by Lemma 2 we obtain $I \leq \sup_{x \to 0} \sup_{x \to 0} |f_{-x}(G + (x + b - u) - G + (x - u))|$

$$1 \leq \sup_{x \in \mathbf{R}^{n}} |\int_{\mathbf{R}^{n}} (G_{out,\alpha}(x+h-y) - G_{out,\alpha}(x-y))|$$

$$\left(\sup_{x \in \mathbf{R}^{n}} \int_{B(x,1)} |f(z)|\right)^{\frac{1}{p-1}}$$

$$\leq \left[\sup_{x \in \mathbf{R}^{n}} \int_{\mathbf{R}^{n}} |G_{1}(x+h) - G_{1}(x)| + \sup_{x \in \mathbf{R}^{n}} \int_{\mathbf{R}^{n}} |G_{in,\alpha}(x+h) - G_{in,\alpha}(x)| \, dx\right] \to 0$$

as $h \to 0$, and the claim is proved.

Next we want to show that $G_1 * (G_1 * |f|)^{\frac{1}{p-1}}$ can be approximate by $G_{out,\alpha} * (G_1 * |f|)^{\frac{1}{p-1}}$. Since we get $G_1 = G_{in}, \alpha + G_{out,\alpha}$ we have $\sup_{x \in \mathbf{R}^n} \left| G_1 * (G_1 * |f|)^{\frac{1}{p-1}}(x) - G_{out,\alpha} * (G_1 * |f|)^{\frac{1}{p-1}}(x) \right|$ $= \sup_{x \in \mathbf{R}^n} \left| \int_{\mathbf{R}^n} G_{in,\alpha}(x-y) \left(\int_{\mathbf{R}^n} G_1(y-z) |f(x)| dz \right)^{\frac{1}{p-1}} dy \right|$ $= \sup_{x \in \mathbf{R}^n} \int_{|x-y| \le \alpha/2} G_1(x-y) \left(\int_{\mathbf{R}^n} G_1(y-z) |f(z)| dz \right)^{\frac{1}{p-1}} dy$

by hypothesis and Remark 3 we have

 $\leq \sup_{x} \int_{|x-y| \leq \alpha/2} \frac{1}{|x-y|^{n-1}} \left(\int_{\mathbf{R}^{n}} G_{1}(y-z) |f(z)| dz \right)^{\frac{1}{p-1}} dy \to 0$ as $\alpha \to 0$.

Next, assume that $G_1 * (G_1 * |f|)^{\frac{1}{p-1}} \in BUC$. Then by theorem 1 in [5]

 $\lim_{\alpha \to 0} \alpha \sup_{x \in \mathbf{R}^n} \left(\int_{\mathbf{R}^n} G_1(x-y) \left(\int_{\mathbf{R}^n} G_1(\alpha y-z) |f(z)| dz \right)^{\frac{1}{p-1}} dy \right) = 0,$ using (2.7), we see that $\alpha \sup_{x \in \mathbf{R}^n} \left(\int_{\mathbf{R}^n} G_1(x - \alpha y) \left(\int_{\mathbf{R}^n} G_1(\alpha y - z) |f(z)| dz \right)^{\frac{1}{p-1}} dy \right)$ $\leq \alpha^{1-n} \sup_{x \in \mathbf{R}^n} \int_{\mathbf{R}^n} \frac{\chi_{B(0,1)}(\frac{x-u}{\alpha})}{\alpha^{1-n}|x-u|^{n-1}} \left(\int_{\mathbf{R}^n} \frac{\chi_{B(0,1)}(u-z)}{|u-z|^{n-1}} |f(z)| dz \right)^{\frac{1}{p-1}} du$ $= \sup_{x \in \mathbf{R}^n} \int_{B(x,\alpha)} \frac{1}{|x-u|^{n-1}} \left(\int_{B(x,\alpha)} \frac{|f(z)|}{|u-z|^{n-1}} dz \right)^{\frac{1}{p-1}} du \to 0,$ as $\alpha \to 0$. Applying Theorem 1 in [5] again, we get $f \in M_p(\mathbf{R}^n)$. This completes the proof of Theorem 2

Acknowledgments

The author would like to thank Prof. Archil Gulisashvili for carefully reading the manuscript and making many helpful comments that improved the presentation of this paper.

References

[1] Adams D. R. and Hedberg, L. I., Function Spaces and Potential Theory, Springer Verlag, (1996).

- [2] Aizenman, M. and Simon, Brownian motion and Harnack's inequality for Schrödinger operators, Comm. Pure Appl. Math. 35, (1982), 209-271, (1982).
- [3] Bourbaki, N., Elements of Mathematics, General Topology, part 1, Addison-Wesley, Publishing Company, (1966).
- [4] Davies, E. B. and Hinz, A., Kato class potentials for higher order elliptic operators, J. London Math. Soc. (2) 58, pp. 669-678, (1998).
- [5] Gulisashvili, A., On the Kato classes of distributions and the BMOclasses, In: Differential Equations and Control Theory (Aizicovici, S. et al., eds), Lect. Notes Pure Appl. Math. 225, Marcel Dekker, New York, pp. 159-176, (2002).
- [6] —, Sharp estimates in smoothing theorems for Schrödinger semigroups, J. Functional Analysis. 170, pp. 161-187, (2000).
- [7] Gulisashvili, A. and Kon, M., Exact smoothing properties of Schrödinger semigoups, Amer. J. Math. 118, pp. 1215-1248, (1996).
- [8] Simon, B., Schrödinger semigroups, Bull. Amer. Math. Soc. 7, pp. 445-526, (1982).
- [9] Stein, E., Singular Integrals and Differentiability Properties of Fuctions, Princeton University Press, Princeton, (1970).
- [10] Zamboni, P., Unique continuation for non-negative solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc. 64, pp. 149-156, (2001).

René Erlín Castillo

Departamento de Matemáticas, Universidad Nacional de Colombia, Ciudad Universitaria: Carrera 30, Calle 45, Bogotá, Colombia e-mail : recastillo@unal.edu.co