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Abstract

We study the scale of function spaces Mp introduced by Zamboni.
For these spaces, we get a characterization in terms of nonlinear
Bessel potentials. This result is based on a known characterization
of the Kato class Kn,s of order s in terms of Bessel potentials and the
space of bounded uniformly continuous functions.
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1. Introduction

The Kato class Kn was introduced and studied by Aizenman and Simon
(see [7] and [2]). For n ≥ 3, it consists of locally integrable functions f on
Rn such that

limr→0 supx∈Rn
R
B(x,r)

|f(y)|
|x−y|n−2

dy=0.

For 1 < p < n, the following classes were defined by Zamboni (see [9]):
the class M̃p of functions f such that

supx∈Rn

½R
B(x,r)

1
|x−y|n−1

µR
B(x,r)

|f(z)|
|y−z|n−1dz

¶ 1
p−1

dy

¾p−1
<∞,

and the class Mp of functions f such that f ∈ M̃p and

limr→0 supx∈Rn

½R
B(x,r)

1
|x−y|n−1

µR
B(x,r)

|f(z)|
|y−z|n−1dz

¶ 1
p−1

dy

¾p−1
= 0.

In [3], Davies and Hinz introduced the scale Kn,s of the Kato classes
of order s > 0. It was shown by Gulisashvili (see [4] Theorem 1) that for
a locally integrable function f the following conditions are equivalent:

(a) f ∈ Kn,s for s > 0;
(b) J−s |f | ∈ L∞ and limα→0+ α

s kJ−s(|f |)αk∞ = 0;
(c) J−s |f | ∈ BUC.

In (a) and (c), the symbol J−s stands for the Bessel potential of order
s, BUC denotes the space of bounded uniformly continuous functions on
Rn, and |f |α (x) = |f(αx)| , x ∈ Rn, α > 0. Previously, this result was
obtained for the Kato class Kn and the Kato class of measures K̃n, in
[6] and [5], respectively.

In the present paper, we generalize the theorem formulated above for the
classes M̃p and Mp, using the nonlinear Bessel potentials (see Theorems
1 and 2 below)

2. Definitions and Notation

In this section, we gather definitions and notation that will be used through-
out the paper. We also include several simple lemmas. By L1loc(R

n) we
will denote the space of functions which are locally integrable on Rn, and
by L1loc,u the space of functions f such that

supx∈Rn

R
B(x,1) |f(y)| dy <∞.

DEFINITION 1. Let f ∈ L1loc(R
n). For any 1 < p < n and r > 0, we set
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Φ(r) = supx∈Rn

µR
B(x,r)

1
|x−y|n−1

µR
B(x,r)

|f(z)|dz
|z−y|n−1

¶ 1
p−1

dy

¶p−1
,

where B(x, r) = {y : |x− y| < r}.
We say that f belongs to the space M̃p(R

n), if Φ(r) < ∞ for all
r > 0.

DEFINITION 2. We say that a function f ∈ Mp(R
n) if

limr→0Φ(r) = 0.

We are now ready to formulate some simple properties of the classes
Mp and M̃p .

LEMMA 1. (See [9], p. 151) For 1 < p < n, we have
(i) Mp(R

n) ⊂ M̃p(R
n), and

(ii) M2(R
n) = Kn.

From Lemma 1 we conclude that both Mp(R
n) and M̃p(R

n) are
generalizations of Kn.

REMARK 1. The following example shows that Kn is properly contained
in Mp(R

n) for p > 2. It is known that the function f(x) = |x|−2 is not
in the Kato class Kn. However, f ∈Mp. Indeed,

lim
r→0

sup
x

½Z
B(x,r)

1

|x− y|n−2
µZ

B(x,r)

dz

|z|2 |z − y|n−1
¶ 1

p−1
dy

¾p−1
= 0.(2.1)

This can be shown by splitting the domain of integration in the interior in-
tegral into the following three parts B(x, r)

T{|z| < 1
2 |y|}, B(x, r)

T{12 |y| ≤
|z| ≤ 3

2 |y|} and B(x, r)
T{|z| > 3

2 |y|}. After routine calculations we see
thatR

B(x,r)
dz

|z|2|z−y|n−1

is majorized by C |y|−1 . Finally we have

C supx

½R
B(x,r)

dy

|y|
1

p−1 |x−y|n−1

¾p−1
→ 0 as r→ 0,

this shows that (2.1) holds. Thus, f ∈ Tp>2Mp.

REMARK 2. (i) For 0 < r < 1, it is not hard to check that for
1 < p ≤ 2 the expression
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kfkM̃p(Rn) = sup
x∈Rn

µZ
B(x,1)

1

|x− y|n−1
µZ

B(x,1)

|f(z)|
|z − y|n−1

dz

¶ 1
p−1

dy

¶p−1
(2.2)

defines a norm on M̃p(R
n).

(ii) For p > 2, the expression (2.2) satisfies the following inequality.

kf + gkM̃p(Rn) ≤ 2
p−2

µ
kfkM̃p(Rn) + kgkM̃p(Rn)

¶
,(2.3)

for all f and g in M̃p(R
n). If U is a neighborhood of 0, from (2.3) we

have 2p−1U + 2p−1U ⊂ U,

then M̃p(R
n ) is a topological vector space.

LEMMA 2. M̃p(R
n) ⊂ L1loc,u(R

n) for 1 < p < n.

Proof. Let f ∈ M̃p(R
n), and fix r0 > 0. Then there exists a positive

constant C such that Φ(r0) ≤ C. It follows that

supx∈Rn

µR
B(x,r0)

1
|x−y|n−1

µR
B(x,r0)

f(z)

|x−y|n−1dz
¶ 1

p−1
dy

¶p−1
≥ supx∈Rn

µR
B(x,r0)

dy

rn−10

µR
B(x,r0)

f(z)
(2r0)n−1

dz

¶ 1
p−1
¶p−1

≥ supx∈Rn

µ
1
2r0

¶n−1µ
m(B(x,r0))

rn−10

¶p−1 R
B(x,r0)

f(z) dz.

Therefore

supx∈Rn

R
B(x,r0)

f(z) dz < BC,

where

B= (2r0)
n−1(r0m(B(0, 1)))p−1.

Finally, let B(x, 1) ⊆ Sn
k=1B(xk, r0), then

supx∈Rn

R
B(x,1) f(z) dz ≤

Pn
k=1 supx∈Rn

R
B(xk,r0)

f(z) dz,

so
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supx∈Rn

R
B(x,1) f(z) dz <∞

therefore

M̃p(R
n) ⊂ L1loc,u(R

n). 2

LEMMA 3. For 1 < p < n, M̃p(Rn) is a complete space.

Proof. Let {fn}n∈N be a Cauchy sequence in B(0, r) = {f ∈ M̃p(Rn) :
f M̃p(Rn) ≤ r}.
By Lemma 2, {fn}n∈N is a Cauchy sequence in L1loc,u(Rn). Since this

space is complete, there exists a function f ∈ L1loc,u(Rn) such that fn → f

in L1loc,u(Rn).

By Fatous’s Lemma, we have f M̃p(Rn) ≤ lim inf fn M̃p(Rn) ≤ r.

Thus f ∈ B(0, r), which means that B(0, r) is complete with respect to
the topology generated by L1loc,u(Rn) - norm. By Corollary 2 of Proposi-
tion 9 in [4, Chapter III § 3, no.5] we obtain the assertion. 2

LEMMA 4. If 1 < p < n, then Mp(R
n) is closed in M̃p(R

n).

Proof. Let us define the map ϕ : M̃p(R
n) → [0,∞) by ϕ(f) =

limr→0 φf (r) (see definition 1). It is not hard to prove that the family
{ϕr}r>0 where ϕr(f) = φf (r) is equicontinuous and ϕr → ϕ pointwise
as r→ 0. Since Mp(R

n) = ϕ−1(0). We obtain the result. 2

Nonlinear Bessel Potentials

In this section, we gather some well-known results concerning Riesz and
Bessel potentials (see, e.g., [8]). Let

Gα(x) =
1

(2π)
n
2 2

α
2 Γ(α

2
)

R∞
0 t

α−n
2 e−

|x|2
2t
− t
2
dt
t ,

denote the Bessel kernel of order α > 0. For more information on the
Bessel kernel, we refer the reader to [8], Chapter 5.

DEFINITION 3. For any f ∈ L1loc(R
n), and α > 0, the function

Gα ∗ (Gα ∗ f)
1

p−1

is called the nonlinear Bessel potential of f , (see [1], p. 21).
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The symbol Iα will stand for the Riesz potential kernel which is defined
as follows:

Iα(x) =
γα

|x|n−α
,(2.4)

where γα is a certain constant (see [8], section V.1). It is Known that

Iα(x) =
1

(2π)
n
2 2

α
2 Γ(α2 )

Z ∞
0

t
α−n
2 e−

π|x|2
2t

dt

t
,(2.5)

where 0 < α < n. We have from (2.3) and (2.4) that

0 < Gα(x) < Iα(x) for 0 < α < n.(2.6)

It is known that the local behavior of the Bessel potential kernel and
the corresponding Riesz potential kernel is the same for 0 < α ≤ n. It is
also known that the Bessel potential kernels decay exponentially at infinity.
More exactly, the following estimates holds: if 0 < α < n, then there exist
Cα > 0 and C̃α > 0 such that

C̃α |x|α−n ≤ Gα(x) ≤ Cα |x|α−n ,(2.7)

for all x with 0 < |x| < 1. On the other hand, for every α > 0 we have

Gα(x) ≤ Cαe
−c|x|,(2.8)

for all x ∈ Rn with |x| > 1. We have from (2.7) and (2.8) that for all x
with 0 < |x| <∞,

Gα(x) ≤ Cα

µ
χB(0,1)(x)

|x|n−α
+ e−c|x|

¶
.(2.9)

Main Results

In this section we will give a characterization of the classes M̃p(R
n) and

Mp(R
n) in terms of nonlinear Bessel potentials.

REMARK 3. It is not hard to prove that the following are equivalent
(a) f ∈Mp(R

n),

(b) limr→0+ supx∈Rn

R
|y−x|≤r

1
|x−y|n−1

³R
|y−x|≤1

|f(z)|
|y−z|n−1 dz

´ 1
p−1 dy = 0,

(c) limr→0+ supx∈Rn

R
|y−x|≤r

1
|x−y|n−1 (

R
Rn G1(y − z)|f(z)|dz)

1
p−1 = 0.
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THEOREM 1. Let f ∈ L1loc(R
n), and 1 < p < n. Then f ∈ M̃p(R

n) if

and only if supx∈Rn{G1 ∗ (G1 ∗ |f |)
1

p−1 } <∞.

Proof. Let f ∈ M̃p(R
n), Gin = χB(0,1)G1 and Gout = χRn|B(0,1)G1.

Since G1 = Gin + Gout and using (2.9), we have supx∈Rn{G1 ∗ (G1 ∗
|f |)

1
p−1 (x)}

= supx∈Rn{(Gin +Gout) ∗ (G1 ∗ |f |)
1

p−1 (x)}
≤ supx∈Rn{Gin ∗ (G1 ∗ |f |)

1
p−1 (x)}

+ supx∈Rn{Gout ∗ (G1 ∗ |f |)
1

p−1 (x)}
= supx∈Rn{Gin ∗ [(Gin +Gout) ∗ |f |]

1
p−1 (x)}

+ supx∈Rn{Gout ∗ (G1 ∗ |f |)
1

p−1 (x)}
≤ supx∈Rn{Gin ∗ (Gin ∗ |f |)

1
p−1 (x)}

+ supx∈Rn{Gout ∗ (G1 ∗ |f |)
1

p−1 (x)}
= supx∈Rn

R
Rn Gin(x− y) (

R
Rn Gin(y − z)|f(z)|dz)

1
p−1 dy

+ supx∈Rn

R
Rn Gin(x− y) (

R
Rn Gout(y − z)|f(z)|dz)

1
p−1 dy

+ supx∈Rn

R
Rn Gout(x− y) (

R
Rn G1(y − z)|f(z)|dz)

1
p−1 dy

= supx∈Rn

R
Rn χB(0,1)G1(x− y)

³R
Rn χB(0,1)G1(x− y)|f(z)|dz

´ 1
p−1 dy

+supx∈Rn

R
Rn χB(0,1)G1(x−y)

³R
Rn χRn|B(0,1)(y − z)G1(y − z)|f(z)|dz

´ 1
p−1 dy

+ supx∈Rn

R
Rn χRn|B(0,1)(x− y)G1(x− y) (

R
Rn G1(y − z)|f(z)|dz)

1
p−1 dy

= supx∈Rn

R
B(x,1)G1(x− y)

³R
B(y,1)G1(y − z)|f(z)|dz

´ 1
p−1 dy

+ supx∈Rn

R
B(x,1)G1(x− y)

³R
Rn|B(y,1)G1(y − z)|f(z)|dz

´ 1
p−1 dy

+ supx∈Rn

R
Rn|B(x,1)G1(x− y) (

R
Rn G1(y − z)|f(z)|dz)

1
p−1 dy

by (2.9) we have

supx∈Rn{G1 ∗ (G1 ∗ |f |)
1

p−1 (x)}

≤ supx∈Rn

R
B(x,1)

1
|x−y|n−1

³R
B(y,1)

|f(z)|
|y−z|n−1dz

´ 1
p−1

+ supx∈Rn

R
B(x,1)

1
|x−y|n−1

³R
Rn|B(y,1) e

−|y−z||f(z)|dz
´ 1
p−1 dy

+ supx∈Rn

R
Rn|B(x,1) e

−|y−z| (
R
Rn G1(y − z)|f(z)|dz)

1
p−1 dy

≤ supx∈Rn

R
B(x,1)

1
|x−y|n−1

³R
Rn|B(y,1)

|f(z)|
|y−z|n−1dz

´ 1
p−1 dy
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+ e−1 supx∈Rn

R
B(x,1)

1
|x−y|n−1

³R
Rn|B(y,1) |f(z)|dz

´ 1
p−1 dy

+ supx∈Rn

R
Rn|B(x,1) e

−|x−y| (
R
Rn |f(z)|dz)

1
p−1 dy

<∞.
To prove the sufficiency in Theorem 1, let us assume that supx∈Rn G1 ∗

(G1 ∗ |f |)
1

p−1 (x) <∞ and 0 < r < 1. Then (2.7) gives

Cp supx∈Rn

R
Rn

χB(0,r)(x−y)
|x−y|n−1

µR
Rn

χB(0,r)(y−z)f(z)
|y−z|n−1 dz

¶ 1
p−1

dy

≤ supx∈Rn

R
Rn G1(x− y)

µR
Rn G1(y − z) f(z) dz

¶ 1
p−1

dy <∞,

therefore, f ∈ M̃p(R
n).

This completes the proof of Theorem 1.
2

THEOREM 2. For 1 < p < n, then f ∈Mp(R
n) if and only if

G1 ∗ (G1 ∗ |f |)
1

p−1 ∈ BUC.

Proof. Let f ∈Mp(R
n), and ϕ be any function in Cc(R

n) such that

ϕ (x) =

(
1 if |x| ≤ 1/2,
0 if |x| ≥ 1(2.10)

with 0 ≤ ϕ(x) ≤ 1 for all x ∈ Rn and spt ϕ ⊆ B(0, 1).

Let us define Gin,α = ϕ( 1α ·)G1 and Gout,α = (1− ϕ( 1α ·))G1. Observe
that Gout,α is a continuous function. We claim that Gout,α∗(G1∗|f |)

1
p−1 ∈

BUC for 1 < p < n, to prove this let us consider

supx∈Rn

¯̄̄
Gout,α ∗ (G1 ∗ |f |)

1
p−1 (x+ h)−Gout,α ∗ (G1 ∗ |f |)

1
p−1 (x)

¯̄̄
= supx∈Rn

¯̄̄R
Rn [Gout,α(x+ h− y)−Gout,α(x− y)] (G1 ∗ |f |)

1
p−1 (y)dy

¯̄̄
= I

by Lemma 2 we obtain
I ≤ supx∈Rn |

R
Rn (Gout,α(x+ h− y)−Gout,α(x− y))|

³
supx∈Rn

R
B(x,1) |f(z)|

´ 1
p−1

≤

⎡⎣ supx∈Rn

R
Rn |G1(x+ h)−G1(x)|+ supx∈Rn

R
Rn |Gin,α(x+ h)

−Gin,α(x)| dx

⎤⎦→ 0



Nonlinear Bessel Potentials and generalizations of the Kato class 293

as h→ 0, and the claim is proved.

Next we want to show that G1 ∗ (G1 ∗ |f |)
1

p−1 can be approximate by

Gout,α ∗ (G1 ∗ |f |)
1

p−1 . Since we get G1 = Gin, α+Gout,α we have

supx∈Rn

¯̄̄
G1 ∗ (G1 ∗ |f |)

1
p−1 (x)−Gout,α ∗ (G1 ∗ |f |)

1
p−1 (x)

¯̄̄
= supx∈Rn

¯̄̄R
Rn Gin,α(x− y) (

R
Rn G1(y − z)|f(x)|dz)

1
p−1 dy

¯̄̄
= supx∈Rn

R
|x−y|≤α/2G1(x− y) (

R
Rn G1(y − z)|f(z)|dz)

1
p−1 dy

by hypothesis and Remark 3 we have

≤ supx
R
|x−y|≤α/2

1
|x−y|n−1 (

R
Rn G1(y − z)|f(z)|dz)

1
p−1 dy → 0

as α→ 0.

Next, assume that G1 ∗ (G1 ∗ |f |)
1

p−1 ∈ BUC. Then by theorem 1 in
[5]

limα→0 α supx∈Rn

³R
Rn G1(x− y) (

R
Rn G1(αy − z)|f(z)|dz)

1
p−1 dy

´
= 0,

using (2.7), we see that

α supx∈Rn

³R
Rn G1(x− αy) (

R
Rn G1(αy − z)|f(z)|dz)

1
p−1 dy

´
≤ α1−n supx∈Rn

R
Rn

χB(0,1)(x−uα )
α1−n|x−u|n−1

³R
Rn

χB(0,1)(u−z)
|u−z|n−1 |f(z)|dz

´ 1
p−1

du

= supx∈Rn

R
B(x,α)

1
|x−u|n−1

³R
B(x,α)

|f(z)|
|u−z|n−1dz

´ 1
p−1 du→ 0,

as α→ 0. Applying Theorem 1 in [5] again, we get f ∈Mp(R
n).

This completes the proof of Theorem 2

2
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