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Abstract

In this paper, under the idea of L-Ty or sub-Ty, we propose a set of
new separation axioms in L-topological spaces, namely sub-separation
axioms. And some of their properties are studied. In addition, the
relation between the sub-separation axioms defined in the paper and
other separation axioms is discussed. The results show that the sub-
separation axioms in this paper are weaker than other separation ax-
ioms that had appeared in literature.
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1. Introduction and preliminaries

Since Chang [1] introduced fuzzy theory into topology, Wong, Lowen,
Hutton etc., discussed respectively various aspects of fuzzy topology (Wong
[17], Lowen [12], Hutton [6]).

Separation is an essential part of fuzzy topology, on which a lot of work
have been done [2-19]. In 1983, Liu [9] introduced the sub-Tj axiom, for
underlying lattice L being a completely distributive DeMorgan algebra, in
terms of closed sets and proved that the fuzzy real line and the fuzzy unit
interval satisfy this axiom. Wuyts and Lowen [18] and Rodabaugh [13]
independently gave a more general L-Tj axioms, the latter for L being a
complete lattice, using only open sets and equivalent to the sub-Tj when
L is a completely distributive DeMorgan algebra. The aim of this paper is
to study some separation axioms on the basis of the thought of the sub-Tj
and the layer of L-topology.

Now we recall some the concepts required in the sequel.

Throughout this paper, (L,\/,A,’) is a completely distributive DeMor-
gan algebra, i.e., a complete and completely distributive lattice with an
order-reversing involution ( ), and with the smallest element L and the
largest element T (L # T). Obviously, for every nonempty set X, L~ the
family of all L-sets, i.e., all mappings from X to L, is also a complete and
completely distributive lattice under the pointwise order. we denote the
smallest element and the largest element of LX by Lx and Tx, respec-
tively. For any A € LX, the set {z : A(z) # L} is called the support of A
and denoted by suppA, i.e., suppA ={x : A(x) # L}

An L-topological space, briefly L-ts, is a pair (L~,d), where d, called an
L-topology on L¥, a subfamily of L¥ closed under the operation of finite
intersections and arbitrary unions, and § = {A' : A € §}; the member
of 0 (resp. 5') is called open (resp., closed) L-sets, and for each B € L,
the L-set B® = \/{U € 6 : U < B} (resp. B~ = N{C € ¢ : B < (C})
is called the interior (resp., closure) of B. An element A € L is called a
molecule if A # | and A < aVb implies A < a or A < b. The set of
all molecules of L (resp., LX) will be denoted by M (L) (resp., M(L¥X));
obviously, M(LX) = {z) : * € X,A\ € M(L)}. For any z) € M(LX), a
closed L-set P € ¢ is called a closed remote neighborhood of xy if z) £ P.
The set of all closed remote neighborhood of x) is denoted by n~(zy). For
any A € LX, a closed L-set P € ¢ is called a closed remote neighborhood
of A if for any = € suppA such that A(x) £ P(z). The set of all closed
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remote neighborhood of A is denoted by ~(A). For any A € LX, Ais a
called pseudo-crisp closed set if 3 a € L — {1} such that A(x) > L if and
only if Vo € X, A(x) > a.

Let f : X — Y be an ordinary mapping. Based on f : X — Y define
an mapping f— : LX — LY which is called a function of Zadeh’s type
and its right adjoint mapping f~ : LY — LX by

vAe L*, vyeY, [fT(A)y) =\{A@): z€X, f(x) =y}, and
VBe LY, Vz € X, f~(B)(z) = B(f(z)), respectively.

For other undefined notions and symbols in this paper, please refer to
Wang [16].

Definition 1.1 (Liu [9]). An L-ts (LX,6) is called a sub-Ty space if for
any =,y € X with x # y, there exists A € M (L), either there is P € n~(x))
such that yy < P or there is @ € n~(y)) such that z) < Q.

Definition 1.2 (Chen and Meng [2]). An L-ts (LX,0) is called a TQ%

or L-Urysohn space if for any x,y, € M (LX) with x # y, there exist
P e€n (z)) and Q € n~(y,) such that P°V Q° = Tx.

Definition 1.3 (Wang [16]). Let (LX,4) be an L-ts. Then,

(1) (LX,6) is said to be Ty if for any xy,y, € M(L¥) with z) % y,, there
exists P € n~ () such that y, < P.

(2) (L, 6) is said to be Ty (or Hausdorff) if for any z,,y, € M(LY) with
x\ £ yu, there exist P € n~(xy) and Q € n~(y,) such that PV Q = Tx.

(3) (L, 6) is said to be regular if for each x) € M (LX) and each nonempty
pseudo-crisp closed set A with = & suppA, there exist P € n~(z)) and
Q € n(A) such that PV Q = Tx. (L*,9) is said to be Tj if it is regular
and T7.

(4) (L, 6) is said to be normal if for each pair of nonempty pseudo-crisp
closed set A and B with suppA N suppB = O, there exist P € n~(A) and
Q € n~(B) such that PV Q = Tx. (LX,0) is said to be Ty if it is normal
and T7.

Theorem 1.4 (Wang [16], You [19]). T;(i = 1,2,23,3,4) is L-good exten-
sion in Lowen’s sense.

Definition 1.5 (Gu and Zhao [4]). An L-ts (LX,6) is said to be layer
Ty if for any a € M(L), (X, (1o(6"))") is Ty, where 7,(8) = {7a(A) : A €
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8}, 7a(A) = {z € X : A(z) > a}. In the same way, layer T;(i = 1,2,3,4)
and layer regular (completely regular, normal) are defined.

Definition 1.6 (Kubiak [7]). An L-ts (L%, ) is said to be

(i) Kubiak-T} (or L-T7) if for all z,y € X with © # y, there exist
U,V € § such that U(z) £ U(y) and V(y) £ V(z).

(il) Kubiak-Ty if for all z,y € X with = # y, there exist U,V € § such
that U(z) £ U(y) , V(y) £ V(z) and U < V.

Lemma 1.7 (Liu and Luo [10]). Let (LX,6) be an L-ts, where § is
generated by a classical topology, then for any A € L¥ such that A° =

V{aX[Ta(A)]O RS M(L)}

Definition 1.8 (Shi [14]). An L-ts (LX,6) is called L-T5 if for all z,y € X
with 2 # y, there exist P € § and Q € § such that Q < P and Q(z) £ P(y).

2. Definitions and characterizations

In this section, we introduce the concept of sub-T7, sub-T5, sub-T, 1
sub-T3 and sub-T} separation axioms in L- topological spaces and establish
the characteristic theorems of these sub-separation axioms. First, some
definitions are given as follows:

Definition 2.1. Suppose that (LX,§) is an L-ts. Then,

(1) (LX,0) is said to be sub-T} if for any z,y € X with o # y, there
exists A € M(L), both there is P € ™ (x,) such that yy < P and there is
Q@ € n~ (y») such that ) < Q .

(2) (LX,0) is said to be sub-Tj if for any z,y € X with o # y, there
exists A € M (L), and there are P € n~(x)) and Q € 1~ (yx) such that
PvQ@="Tx.

(3) (LX,6) is said to be sub—TQ% if for any z,y € X with = # y, there
exists A\ € M(L), and there are P € n~(z)) and @ € n~(y») such that
PoVQ° = Ty.

(4) (L%, 6) is said to be sub-regular if for each 2 € X and each nonempty
pseudo-crisp closed set A with x ¢ suppA, there exists A € M (L), and
there are P € n~(x)) and Q € n~(A\A) such that PV Q = Tx. (LX,6) is
said to be sub-Tj if it is sub-regular and sub-77.

(5) (L, ) is said to be sub-normal if for each pair of nonempty pseudo-
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crisp closed set A and B with suppA N suppB = O, there exists A € M (L),
and there are P € n7(AA) and Q € n~ (AB) such that PV Q = T x, where
M(z) = AN A(x) for any x € X. (LX,6) is said to be sub-Ty if it is
sub-normal and sub-Tj.

By Definition 2.1, we have:

Corollary 2.2. The following implications hold: T; = sub-T;, where i=
1,2, 2434
) Ly 499y

Now we introduce the convergence of molecular nets. Let (L~,d) be
an L-ts, S = {S(n) : n € D} a molecular net and e € M(L¥) , e is said
to be a limit point of S, (or S converges to e ; in symbols, S — e), if for
VP € n(e), S(n) £ P is eventually true, that is there exists m € D such
that S(n) £ P for all n € D with n > m. The following results show that
the convergence of molecular nets is unique under a certain condition for
the sub-T5 space.

Theorem 2.3. Let (LX, ) be a sub-T; space, then for each molecular net
S such that |Kg| <1, where Kg ={z € X : limS(z) = T}.

Proof. Let (LX) be a sub-Ty space and S = {S(n) : n € D} be a molecu-
lar net. Assume that |Kg| > 2, for any z,y € Kg with = # y, since (LX)
is sub-T5, there exists A € M (L), and there are P € n~(x)) and Q € n~(y))
such that PVQ = Tx. Then we have S — z) and S — y) from z) < lim S
and y) < lim S by Theorem 2.3.4 (Wang [16]). So there exists an n; € D
such that S(n) £ P for all n € D with n > n; and there exists an ny € D
such that S(n) £ @ for all n € D with n > ng. Taking ng € D such that
ng > n1 and n3g > ng, hence we have S(n) £ PV Q when n > n3.This
implies that we must have PV ) # T x. This is a contradiction. O

If T is a molecule, the inverse of Theorem 2.3 is also true.

Theorem 2.4. (L%, §)is an L-ts, if for each molecular net S with |Kg| < 1,
where Kg = {z € X :1im S(z) = T}, then (LX,§) is a sub-T, space.

Proof. Suppose that (L~ §) is not a sub-T5 space, then there exist x,y € X
satisfying * # y, VA € M(L),VP € n~(x)) and YQ € n~(yx) such that
PVv@Q# Tx. Let D(A\) =n(x)) x n~(yx) and D(X) be a directed set by
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product order. For each m = (P, Q) € D()), we can take a molecule S*(m)
such that S*(m) £ PV Q. Let S* = {S*(m) : m € D(\)}, hence it is easy
to prove S* — ) and S* — yy . Therefore, lim S* > zy V yy. Since T is
a molecule, the standard minimal set 5*(T) is a directed set(Wang [16]).
We denote 5*(T) by E, i.e., E = *(T). Noticing that {z)}rcr, {¥r}reE
are molecular nets and {x)}rxep — =7, {yr}ree — yT, We can make a
molecular net S : E x [| D(\) — M (LX) such that
AEE

SO ) =SMfN) L YN ) € Ex [ D).

AEE

Then, S — z7, S — yr. In fact, for every P € 5~ (z7), since
{zx}rer — xT, there exists a \g € F such that z) £ P for all A € E with
A > X\g. Tt follows from S* — z) for A € E that there exists my € D())

s.t. SM(m) £ P for all m € D()\) with m > my. We define fo € [[ D()\)
AeE
as follows:

my, A < )Xo.

fold) = { any fixed element in D(X), A £ Ag.

Then we can prove for every pair (A, f) € E x [] D(A) with (A, f) >
AEE

(Mo, fo) such that S(A, f) £ P, i.e., S is not in any closed remote neighbor-
hood P of 27 eventually. So we have S — z1 . Similarly, we can prove
S — yr. Therefore, |Kg| > 2. This contradicts to |Kg| < 1. Thus, we
conclude that (LX) is a sub-T, space. O

With Theorem 2.3 and Theorem 2.4, we have:
Corollary 2.5. Let T be a molecule, then (L%, ) is a sub-T5 space iff for
each molecular net S such that |Kg| < 1, where Kg = {z € X : lim S(z) =
T}

For the sub-T5 space, we have the following theorem:
Theorem 2.6. Let (L~,5) be a sub-T; space and T be a molecule,

then super F-compactness, N-compactness, strongly F-compactness and
F-compactness are equivalent.
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Proof. The proof is similar to that of Wang’s Theorem 6.4.29 in [16].

Theorem 2.7. Suppose that (LX,6) is a weakly induced L-ts. If it is a
sub-T; space, then (X, [d]) is a T space.

Proof. Let (L*,0) be a sub-Ty space and =,y € X with  # y. Then
there exists A € M (L), and there are P € n~(z)) and Q € n~(y») such
that PV Q = Tx. We put

U={teX:P{#)ZXN}={teX:P(t)#\}, and

V={teX: Q@) gN}={te X:Q(@t) # A}

Then it is easy to know that yy,xy € § ie., U,V € [0]. Obviously
x € U,y € V. Thus it remains only to show that UV = @. In fact, if
there were a z € UV, then we have A £ P(z) and A € Q(z). Hence,
A £ (PV Q)(z), which contradicts to PV @ = T x. Therefore, (X, [d]) is a
T5 space.

3. Properties

In this section,we will investigate some nice properties of sub-separation
axioms. At first, we show that sub-separation axioms are good extensions
in the sense of Lowen.

Theorem 3.1. Let (X, 7) be a crisp topological space. Then (L*,w (7))
is a sub-T; space iff (X,7) is a T; space, where i= 1, 2, 2%, 3, 4.

Proof. Sufficiency. Let (X,7) be a T; space (i=1, 2, 2%, 3, 4). Then
(LX,wr(T)) is a T; space by Theorem 1.4. Thus from Corollary 2.2, we
know that (L~,wr (7)) is a sub-T} space.

Necessity. Case i=1: Let (L~X,w (7)) be a sub-T} space. For any z € X
and taking y € X with z # y, since (LX,w (7)) is a sub-T} space, there
exists A € M(L), both there is P € n~(yy) such that )y < P and there is
Q@ € n~(zxy) such that y\ < Q. We put

U={2eX:P(2)Z\}.

It is clear that U € 7,2 ¢ U and y € U. Hence y ¢ {z}~, where {z}~ is
the closure of {z}. Therefore, (X,7) is a T} space.
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Case i= 2: For any two distinct points z,y € X with = # y, since
(LX,wr(7T)) is a sub-Ty space, there exists A € M (L), and there are P €
N~ (zx) and @ € 7 (yx) such that PV Q = Tx. We put

U={zeX:P()Z\N}, V={2eX:Q(2) £ \}.

Noticing that P',Q" € wr(7) and zy £ P, yr» £ Q, hence U,V € T and
x € U, y € V. Thus it remains only to show that U NV = @. In fact, if
there were a z € U NV # (), then we have A £ P(z) and A £ Q(z). Hence
AL (PVQ)(z) =T, which contradicts to A < T. Therefore, (X,7) is a
T5 space.

Case i= 23: For any z,y € X with z # y, since (L¥,wr (7)) is a
sub—Tg% space, there exists A\ € M(L), and there are P € n~(z)) and
Q@ € 1~ (yy) such that P°VQ° = T x. Clearly, PVQ = Tx. From A £ P(x)
and A £ Q(y), we know that there exist Ap € 5*(\) and Ao € *(\) such
that A\p £ P(z) and Ao £ Q(y). Since X is a molecule, the standard
minimal set 5*(\) is a directed set (Wang [16]). Taking v € §*(\) such
that v > Ap V A\g. We put

E=7,(P)={z:P(2) 27}, FF=71(Q) ={z:Q(2) 2}

It is clear that E,F € T, 2 ¢ E, y ¢ F and EUF = X. In order to prove
that (X,7) is a Tg% space, we need only to verify E° U F° = X by the
definition of Th3. For this purpose, we firstly prove that 7,(P°) C [r(P)]°
and 7,(Q°) C [174(Q)]°. In fact, taking z € 7,(P°), from Lemma 1.7, we
have
Vo axXprapye(2) = P(2) > X

aceM(L)
Therefore, there exists o € M(L) such that z € [7,(P)]° and o > 7. i.e.,
z € [1o(P)]° C [ry(P)]°. Hence, we obtain that 75(P°) C [ry(P)]° from
the arbitrariness of z. Similarly, we can get 7,(Q°) C [7,(Q)]°, as desired.
Naturally, we have

E°UF° =[(P)°U [(Q)]° 2 a(P°) UTA(Q°) = Ta(P° vV Q°) =

ie, (X,7)is a TQ% space.

Case i= 3: Since sub-T] separation axiom is an L-good extension, we
prove this theorem only for the sub-regular case.

For any = € X, suppose that E € 7' with ¢ FE. Clearly, xg is a
nonempty pseudo-crisp closed set in (LX,wy (7)) and & supp(xx). Since
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(LX,wr(T) is a sub-regular space, there exists A € M(L), and there are
P en(xz)) and @ € n~ (Axg) such that PV Q = Tx.
Let

U={2:P(2) 2N}, V={2:Q () £ \'}.

It is easy to verify that x € U, E C Vand UNV = 0O (U,V € T).
Therefore, (X, 7T) is a regular space.
Case i= 4: the proof is similar to that of the case i= 3. O

Now we consider the heredity of the sub-separation. The following
results show that sub-7; (i= 1, 2, 2%) separation axioms are hereditary.
Firstly, the concept of the extension is introduced. Let Y C X, A € LY.
A* € LX is defined as follows: V& € X,

AW@Z{é@% i;?

Then A* is called the extension of A.

Theorem 3.2. Let (LX,§) be L-ts and Y be a nonempty crisp subset of
X. If (L%, §) is a sub-T} space, then the subspace (LY, 6|Y) is also a sub-T;
space, where §|Y = {G|Y : G € 6}, i= 1, 2, 21.

Proof. We only prove the case i=2 and izZ%.

Case i= 2: Let z,y € Y with = # y. Since (LX,6) is a sub-T space,
there exists A € M (L), and there are P € n~(z,*) and @ € 7~ (y»*) such
that PV Q = Tx, where z3, y} are the extensions of xy, y\, respectively.
Notice that P € n~(x)*) implies that P|Y € n~(z)). Similarly, Q|Y €
1~ (yr). Therefore, there exists A € M (L) and there are P|Y € n~(x,)
and Q|Y € n~(yy) such that (P|Y) V (Q|Y) = Ty, i.e., (LY,4]Y) is also a
sub-T5 space.

Case i= 2%: Suppose that z,y € Y with 2 # y. Since (L¥,0) is a
sub—T% space, there exists A € M(L), and there are P € n~(z3) and
@ € n~(y3) such that P°V Q° = Tx, where z3}, vy} is the extensions of
xx, Y, respectively. Noticing that P € n~(z}) implies that P|Y € n~(x))
and @ € n~ (y3) implies that QY € 77 (), then we have that there exists
A € M(L) and there are P|Y € n~(z)) and Q|Y € ™ (y»). Hence we need
only to show that (P|Y)°V (Q|Y)° = Ty. In fact, from (P|Y)° > (P°|Y),
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we get that
(PIY)°V(QY)” = (PY)V(QY) =Ty.

Thus (LY,6]Y) is also a sub-Th3 space. O

Theorem 3.3. Let (LX,8) be L-ts , Y be a nonempty crisp subset of X
and xy € 0. If (LX,§) is a sub-T} space, then the subspace (LY,§]Y) is
also a sub-T; space, where i= 3, 4.

Proof. We only prove this theorem only for the case i= 3. Since sub-T}
separation axiom is hereditary, we prove the theorem only for the sub-
regular case.

Let B be a nonempty pseudo-crisp closed set in (LY,6|Y) and y € YV
with y & suppB. Since B € (8]Y) = §'|Y, there exists A € § such that
B = A|Y. And we have B = B*|Y, where B* is the extension of B. It is easy
to prove that B* = A A xy and B* is a nonempty pseudo-crisp closed set.
By the sub-regularity of (L~,d) and y ¢ suppB*, there exists A € M(L)
, and there are P € 1~ (y}) and @Q € n~ (AB*) such that PV Q = Ty,
where y3 is the extension of yy. Then we know that P|Y € n~(y,) and
Q|Y € n~(AB) such that (P|Y) V (Q|Y) = Ty. This shows (LY,d§|Y) is
also a sub-regular space. Therefore, the proof of the theorem is complete.O

In the end of this section, we show that sub-T; (i= 1, 2, 2%) separation
axioms are productive. First, a lemma is needed.

Lemma 3.4. Let (LX,0), (LY, ) be two L-ts, f— : (LX,8) — (LY, u) be
a closed bijection and f~, f~ be continuous. If (L%, d) is a sub-T} space,
then so is (LY, i), where i= 1, 2, 2%, 3, 4.

Proof. We prove the theorem only for the case i=1 and {=3.

Case i= 1: For any y,z € Y with y # z, since f is a closed bijection,
there are u,v € X with u # v such that f(u) =y, f(v) = z. Since (L%, J)
is a sub-T space, there exists A € M (L), both there is P € n~ (uy) such
that vy < P and there is @ € n~(vy) such that u) < @ . Therefore,

yn = [ (ur) £ f7(P), zx=f"(vx) < f7(P), and

2= f7() £ (@) ya=f"(un) < F7(Q).
From P,Q € § and f< is continuous, we have f~(P) € 5 (y») and
f~(Q) € n=(2). Hence, (LY, 1) is a sub-T} space.
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Case i= 3: For any y € Y and nonempty pseudo-crisp closed set A € ,u/
with y € suppA. Since f is closed bijection, there exist z € X, B € ¢ such
that f(z) =y, f(B) = A ie., == f"'(y),B = f(A). We have B € §
from 7 is continuous. It is easy to prove that B is a nonzero pseudo-crisp
closed set. From y & suppA, we have:

y & suppA = Aly) = L = A(f(z)) =L (f(z) =y)
= f7(A)(z) = L (by the definition of f7)
= x & suppf(A) = suppB.

For z € X and B € § with = ¢ suppB, since (LX,§) is a sub-T space,
there exists A € M(L), and there are P € n~(z)) and @ € n~(AB) such
that PV Q = Tx.

Therefore, gy = £~ (@) £ = (P), M = Af~(B) £ f~(Q), f~(P)V
f7(Q)=Ty.From P € § and f is continuous, we have f~(P) € n™(yy)
and f~(Q) € n~(MA). Thus, (LY, ) is a sub-T3 space. O

Theorem 3.5. Let {(L*t,6;)}ser be a family of L-ts and (L¥,6) be a
product topological space. If for any t € T, (L*¢,d;) is a sub-T} space ,
then so is (LX, ). If (LX,6) is a sub-T; space and (L~t, ;) is a fully strat-
ified space, then so is (LXt,8;) , where i= 1, 2, 2%.

Proof. We only prove the case i=2, other cases are obtained in the similar
way.

Necessity. Suppose that {(L*¢,6;)}ier is a family of sub-Th space. Let
Vo = {2'her, y = {y'her € X with x # y, then there exists a r € T
such that " # y". Since (LXr,§,) is a sub-Th space, there exists A €
M(L), and there are B, € n~(z%), C. € n~(y}) such that B, v C, =
Tx,. Clearly, P,=(B,),P,~(C,) € §, P, (B,)(z) = B.(z") # X and
P, (Cr)(y) = Cr(y") 2 A. Furthermore, x\ £ P, (By), yx £ P (C)
and P."(B,)V P,~ (C,) = Tx. Hence, we prove that (LX,6) is a sub-T3
space.

Sufficiency. Let (LX,§) be a sub-Tj space and (L%, §,.) be a fully strat-
ified space, where r € T. For any z = {z'};cr € X, from Theorem 2.8.9
(Wang [16]), (L, 8| X, which is parallel to (LXr,6,) through z is homeo-
morphic to (LX",6,). Since (L¥7,§|X,) is a sub-T space as a subspace of
(LX,6), (LXr,6,) is a sub-Ty space from Lemma 3.4. O
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The next result follows from the above Theorem.

Corollary 3.6. Let {(L*t,wr(7;))}ter be a family of L-ts topologically
generated by a family of topological spaces {(X;, 7;) }ter and (LY, wr (7))
be a product L-ts of {(LX*,wr(7;))}ser. Then (LX,wr (7)) is a sub-T;

space iff for V¢t € T, (LXt,wr(7;)) is a sub-T; space, where T = [[ Tz, i=
teT

1
1,2, 21,

4. The relations with respect to other separation axioms.

In this section, we make a comparison between separation axioms de-
fined in this paper and those presented by Chen and Meng [2], Fang and
Ren [3], Gu and Zhao [4], Ganguly and Saha [5], Kubiak [7], Kandil and
El-Shafee [8], Shi [14],Shi and Chen [15] and Wang [16], and offer a lot of
examples to show the relations between them. At first, we show that the
sub-separation axioms defined in this paper are harmonious.

From Definition 2.1, the following theorem is obvious .

Theorem 4.1. Let (L*X,0) be an L-ts. Then the following implications
hold:

(1) sub-T1= sub-Tj

(2) sub-Ty = sub-T3= sub-T5

Theorem 4.2. Let (LX,6) be an L-ts. Then sub-Ty = sub-T3.

Proof. Suppose that (L¥,d) is a sub-Ty space. For any z,y € X with
x # 5, since (L, §) is a sub-Th space, there exists A € M (L), and there are
P en(z)) and Q € ™ (yy) such that PVQ = Tx. From yy < PV Q and
yx £ Q, we have yy < P. Similarly, on account of zy < PV Q and z) £ P,
then z) < Q. Hence, for any z € X with x # y, there exists A € M(L),
both there is P € n~(x)) such that y) < P and there is Q € n~(y)) such
that =) < Q, i.e., (LX,6) is a sub-T} space. O

From Theorem 4.1 and 4.2, we obtain the following result that shows
the sub-separation axioms are harmonious.

Corollary 4.3. sub-T; = sub-T3= sub-T5= sub-T7= sub-Tj.
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Theorem 4.4. Let (L%, ) be an L-ts. Then sub-T>3 = sub-Tb.

Proof. Let (LX,6) be a sub—TQ% space. For any z,y € X with z # y,
since (L¥,6) is a sub-Th3 space, there exists A € M (L), and there are
P € n(z)) and @ € n~(yy) such that P°V Q° = Tx. Noticing that
P°VQ° < PVQ, we get that PV Q = Tx. Therefore, (L¥,§) is a sub-T
space. O

The following example shows that the L-unit interval I(L) need not
satisfy the sub-7T; axiom.

Example 4.5. The [0,1]-real line [0,1](]) does not satisfy sub-T; axiom.
In fact, take z,y € [0, 1]([) satisfying Vt € R

1, t € (—0,0), 1, t € (—0,0),
z(t) =1 0.5, te][0,1], y(t)y=<¢ 0.6, te]l0,1],
0, t e (1,+00), 0, t e (1,400).

For convenience, we only consider P or () which has the forms of R;\/L;.
Case I: When 0 < A < 0.4, we have that

g(xy) = V{t | an < L} = V{t | A< z(t—)} = 1;
o(xy) = A{s |y <R} =As| A<a(s+)}=0.

Hence,
2y L LVR, =t>1,5<0.

Then we get that
(L; VR)(y) =0 from ¢t>1,s<0.

Naturally, we obtain that y) £ L; Vv RIS.
Case II: When 0.4 < X\ < 0.5, we have that

e(my) =V{t | ax < L} =1; o(zy)=A{s|zx<R,}=0.

Hence,
2y L LVR, =t>1,5<0.
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Then we get that
(LyVR)(y) =0 from t>1,s<0=y\ £ L,V R,
Case III: When 0.5 < A < 0.6, we have that

ety ) =V{t |2y <L} =1; o(yn) =A{s |y <R} =1

Hence,
L L, VR, =>t>1,s<1.

Then we get that
(L; VR) () <0V0.5=05 from t>1,s<1=xz, < L, VR,
Case IV: When 0.6 < A < 1, we have that

e(xy) = V{t | axn < L} =0; o(zx)=A{s|zx<R)}=1

Hence,
2x L L, VR, =t>0,s<1.

Then we get that
(Ly VR)(y) <05V 04=05 from t>0,s<1=yy %L VR,

From case I, II, III and IV, we have that [0,1](I) does not satisfy the
sub-T7 axiom. O

Remark 4.6. From the above example , we know that the L-unit interval
need not satisfy the sub-T; axiom. So the L-unit interval is not compatible
with the sub-separation axioms proposed in this paper.

Next we make a comparison between the sub-separation axioms and
those presented by Kubiak [7].

Theorem 4.7. Let (LX,6) be an L-ts. Then sub-T; = Kubiak-T1.

Proof. Let (LX,6) be sub-Ty. In order to prove that (L%, ) is Kubiak-
Ty, take z,y € X with  # y. Then there exists A € M(L), and there
are P € n~(z)) and @ € n~(yy) such that yy < P, x) < @ , respec-
tively. Taking U = P, V = Q', we have that U,V € § , U(z) £ U(y) and
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V(y) £ V(z). Therefore, (LX,d) is Kubiak-T7. O

In general, Kubiak-T; need not imply our sub-77. This can be seen
from the following example.

Example 4.8. Let L={1,a,b, T} satisfy aVb =T, aAb= 1, d =b
and X = {z,y} with x # y. Take 06 = {Lx, Tx,%a, Yp,Ta V yp}, then
§ = {lx,Tx,M,N,R}, where M, N and R are defined as follows:

M(:E):bv M<y):—|—; N(x):—rv N(y):a; R(.’L‘):b, R(y):a’

We can prove that (L%,d) is not sub-7} , but it is Kubiak-T}. Now
we show that (LX,d) is not sub-T;. We need to show that YA € M (L),
VP € n~(zxy) such that yy £ P, or VQ € n~(yy) such that x) £ @. In fact,
we have that P € n~(z)) = {Llx,M,R}, Q € n (yx) = {Lx} when A = a.
Hence we get that x) £ Q. Similarly, we have that P € n~(z)) = {Lx},
Q € n (yn) = {Lx,N,R} when A\ = b. Then we obtain that yy £ P.
Therefore (LX,§) is not sub-Tj. Next we show that (LX) is Kubiak-
Ty. Taking U = z,,V = y, we get that U,V € §, U(z) £ U(y) and
V(y) £ V(z). O

Theorem 4.9. Let (LX,§) be an L-ts and T be a molecule. Then sub-T
= Kubiak-T5.

Proof. For any z,y € X with 2 # y, since (LX,6) is a sub-T, space,
there exists A € M(L) , there are P € n~(z)) and @ € n~ (yx) such that
PVQ=Ty. Taking U = P',V = Q’, we have that U,V € 6,U(z) £ U(y)
and V(y) £ V(z). Now we only need to prove that U < V' ie. P <Q.
In fact, since PV @ = Tx and T is a molecule, we have that P(x) = T
or Q(z) = T for Yz € X. Easily we get P’ < Q ie. U < V'. Therefore
(LX,6) is a Kubiak-T} space.

Remark 4.10. If T is not a molecule, is Theorem 4.9 true? We leave it
as an open problem. Generally, Kubiak-T5 need not imply sub-T5 (seeing
Example 4.11 below). O

Example 4.11. Let L=[0,1] and X = {z,y}. Take 0={Lx, Tx, A, B,0.3*,
0.7}, where A, B are defined as follows:
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A(x) =0.7, A(y) =0.3; B(z)=0.3, B(y) =0.7

Then we get that (L~,d) is a Kubiak-T, space. In fact, taking U =
A,V = B, we get that U(z) £ U(y) V(y) £ V(z) and U < V'. Tt is
easy to check that (LX) is not a sub-T space. For VA € M(L), we get
that 7 (), n~(ya) € {Lx, A, B,0.3%,0.7*}. Therefore for VP € n~(x,),
YQ € 7~ (y»), we have PV Q < 0.7*. Hence (LX) is not a sub-T, space.0

Now, we discuss the relation between the sub-separation axioms and
other separation axioms presented by Shi[14], Wang[16], Gu and Zhao[4].
The following two examples show that sub-75 need not imply L-T5 and
L-T5 also need not imply sub-T5.

Example 4.12. Let L=[0,1] and X = {z,y}. Taked = {Lx, Tx,Cy,Cs,C1V
Cs}, where C; is defined as follows:

Ci(x) = 0.5, Ci(y) =0; Ca(z) =0, Ca(y) = 0.5.

Easily we get that (LX,0) is a sub-T, space. In fact, taking A = %,P =
and Q = C,, we get that P € (), Q € n~(y») and PV Q = Tx. It is
easy to check that (LX,6) is not L-Tp. O

Example 4.13. Let L, X and § be defined as in Example 4.11. From
Example 4.11, we know that (LX, ) is not a sub-T5 space. Next we prove
that (LX,8) is L-T». Take @Q = A,P = B', then Q € §, P € § ,Q < P and
Q(z) £ P(y). O

Lemma 4.14 (Wang [16]). If (LX, ) is N-compact and T3, then it is 7y. O
Obviously, we have the following result.

Theorem 4.15. If (L%, 6) is N-compact and T, then it is sub-T; , where
i=1,2,24 3,4. O

Lemma 4.16 (Gu and Zhao [4]). Let (L*X,d) be an L-ts. Then,

(1) (L%, ) is Layer Ty iff for any xy,yx € M (L) with  # y, there exists
pPed such that z) £ Pand yy < Porzy < Pand yy £ P .

(2) (LX,0) is Layer Ty iff for any zy,y\ € M (LX) with x # y, there exists
P € ¢ such that zy £ P and y < P.
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(3) (L, 0) is Layer Ty iff for any xy,yy € M (LX) with  # y, there exist
P,Q € § such that P € n~(z)) ,Q € (yy) and PV Q > [\]. O

By Lemma 4.16, we have the following conclusion.

Theorem 4.17. Let (L~,§) be an L-ts. If (L%, ) is a layer T} space, then
it is a sub-7; space, where = 0, 1.0

Lemma 4.18 (Gu and Zhao [4]). Let (LX,6) be an L-ts. If (LX) is a T;
space, then it is a layer T; space, where i= 0, 1, 2.0

Therefore, by Theorem 4.17, Lemmas 4.18, 4.16 (3), the following re-
sults hold.

Corollary 4.19. (1) T; = layer T;= sub-T;, where i= 0, 1.
(2) layer To= sub-T5 whenever the largest element T is a molecule. O

In the following, we give an example showing that a sub-75 space need
not be a layer T5 space, to say nothing of being T5.

Example 4.20. Let L,X and 6 be defined as in Example 4.12. From Exam-
ple 4.12, we know that (L~ d) is a sub-T, space. But (L%, §) is not a layer
T, space. In fact, taking o = %, then we get that (X, (1a(8))) = {0, X}.
Clearly, (X, (74(6))") is not a Ty space. From Definition 1.5, we know that
(L%, 6) is not a layer T space. It is easy to prove that (LX,4) is not a Ty
space. O

From all of examples above, we find that, in general, all sub-separation
axioms in this paper are weaker than other separation axioms that had
appeared in literature. Indeed, there are many L-topological spaces which
satisfy sub-separation axioms, but doesn’t fulfill other separation axioms.
This is one of differences between sub-separation axioms and other separa-
tion axioms. For examples, there are good work on separation axioms of
L-topological spaces in [2], [3], [5] and [8]. In the following, we will offer
more examples to show that our sub-separation axioms is very different
from separation axioms established in these papers. For simplicity, we only
consider T, 1 and T3 separation axiom therein. Recall the definition of W15

in [3] as follows.
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Definition 4.21. An L-ts (L, ) is called a WTy-space if for any zy, y,, €
M (LX) with z # y, there are P € 1~ (z)) and @ € 1~ (y,) such that
PvQ@> AVt O

Remarks 4.22. (1) For an L-ts (L*X,d), it is easy to check its TQ% 2]
(seeing Definition 1.2 introduced in the paper) means sub-7, 1 but Example
4.23 below shows that the converse needn’t be true.

(2) For an L-ts (LX), it is easy to check its W75 implies sub-T> when-
ever the largest element T is a molecule, and Example 4.23 below proves
that the converse needn’t be true. O

Example 4.23. Let L be the completely distributive De Morgan algebra
having four elements: 1, a, b, T satisfyingaVb=T, aAb= 1,ad =b,
and X = {z, y} (z # y). Take &' = {Lx, Tx, qa V Yp, Tp V Yo }. We will
show the following conclusions.

(i) The L-ts (LX, §) is sub-T. In fact, now M (L) = {a, b}. Forz, y € X
with x # y, thereis A\ = a , and also P =2, Vy, € n7(z)), Q@ = x4 Vuyp €
7~ (y) such that PV Q = Tx. Thus (L%, 6) is sub-T3, as desired.

(ii) The L-ts (LX,6) is sub-Ty and also sub-T;. These can be obtained
by (i) and Theorems 4.1(1), 4.2.

(4ii) The L-ts (LX,d) isn’t W15 in the sense of [3]. Letting x4, yp €
M (LX), it is easy to check 7 (24)={ Lx, Vya} and 0~ (yp)={Lx, TuVya}.
Hence for any P € n~ (z,) and Q € n~ (yp), it cannot be true that

PVQ>(aVb)* =Ty,

where (a V b)* is the constant L-set with its value (a V b) in the sense of
[3]. In fact, for any P € = (z,) and Q € 0~ (yp), PV Q < zp V y,, but
pVye < Tx and 23 Vy, # T x. By Definition 4.21 of W Ty, the L-ts (L%, §)
isn’t WTs.

(iv) The L-ts (LX,6) is sub—TQ%. Let P =x,Vyg and Q = x4 V yp. It
is observed that both P and ) are open since P = @ and ' = P. For
the unique pair of z and y with = # y, putting A = a € M(L), there are
P en(z)) and Q € n (y») such that

P°VQRQ° =PVQ="Tx.

Thus , (L, ) is sub-T,1 by Definition 2.1 (3).
2
(v) The (L¥X,6) isn’t T,1 in the sense of [2] (see Definition 1.2 also).
2
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Indeed, 7 (zq) = {zp V ya} and n~ () = {xp V yo}. We find that
there are two points z4,y, € M (LX) with = # y such that for any P €

N (zq) = {xp Vya} and Q € 0~ (yp) = {xp V ya} (it must be P = x V y,
and Q = zp V Ya)

P°VQ°=PVQ=x,Vys # Tx.
It implies that (LX,4) isn’t T,1 by Definition 1.2, as desired. O
2

In [15],Shi and Chen redefined Urysohn in L-topology, where it was
called Shi-Urysohn. Now we consider the relation between the Shi-Urysohn
axiom and our sub-T,: axiom. Recall the definition of Shi-Urysohn axiom

2

in [15] as follows.

Definition 4.24. (Shi and Chen [15]).

An L-ts (LX,0) is said to be Urysohn if any z),y, € M(LX) with
zx £ yu, there exist P € n~(x)) and @ € R°(y,,) such thatP® > @, where
N(y,) ={V:y, <V, Veoi} O

The following example shows that our sub-T, 1 need not imply Shi-
Urysohn.

Example 4.25. Let X = L =[0,1], and § = {xg : E C X}, where xp is
the characteristic function of E. Then 0 is a [0,1]-topology on X. It is easy
to check that (LX,6) is TQ% (Urysohn), then it is sub—T% . But it is not
Shi-Urysohn . In fact, for any x € X and any P € n~(x7), it follows that
P°(z) = L. But there is no Q € R°(zg5) such that P° > Q. O

Remark 4.26. Does the Shi-Urysohn axiom imply our sub-7;,1? We can’t
2
solve it. So we leave it as an open problem. O

To discuss the relation between sub-T5 separation axiom and other 75
separation axiom introduced in [5] and [8]. Note that we consider the case
of L =1 =0, 1], the unit interval, so that the conclusions is available for
the membership valued lattice using in the published papers [6] and [9].
We introduce some definitions for the convenience of readers.

Definition 4.27. (Liu and Luo[11]). Let zy € M(IX) and A, B € IX. We
say x) quasi-coincides with A, or say x is quasi-coincident with A, denoted
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by zaqA, if A(x) + X > T; say A quasi-coincides with B at x € X, or say
A is quasi-coincident with B at x, AgB at x for short, if A(x)+ B(z) > T;
say A quasi-coincides with B, or say A is quasi-coincident with B, denoted
by AgB, if A quasi-coincides with B at some point x € X. Relation “does
not quasi-coincides with” or “is not quasi-coincident with” is denoted by §.
O

Definitio 4.28. (Liu [9]). Let (IX,0) be I-ts and ) € M(IX). A fuzzy
set U is called a quasi-coincident neighborhood (q-nbd, for short) of z) if
there exists V € § such that z ¢V and V < U. O

Definition 4.29. (C.K. Wong [16]). Let (IX,8) be an I-ts, A € I and
Ty € M(IX).

A is said to be a neighborhood (nbd, in short) in (X,d) iff there is a
B € ¢ such that x) < B < A. Therefore, an open set U € ¢ is the nbd of
each of its points. O

Definition 4.30. (S. Ganguly and S. Saha [5]). An I-ts (IX,0) is GS-T%
(Originally, T») iff for any two distinct points z and y,:

Case I. When z # y, x) and y,, have open nbds which are not quasi-
coincident.

Case II. When z =y and A < p, then y, has an open ¢g-nbd V' and
x) has an open nbd U such that VqU. O

Definition 4.31. (A. Kandil and M.E. El-Shafee [8]). An I-ts (IX,6) is
FTy if Vo, y, € M (1) with TAQYu, there exist Qz, € ¢ and Q,, € ¢ such
that

A S QIA (l’), H S Qy“ (y) and QWAGQ%L' U

Remark 4.32. The following Example 4.33 shows that our sub-75 needn’t
be GS-T5 in the sense of Definition 4.30. O

Example 4.33. Let (IX,6) be the I-ts defined in Example 4.12. We have
showed that (IX,6) is a sub-Th space in Example 4.12. Now we assert
that (IX,6) isn’t GS-T5 in the sense of Definition 4.30. Taking A = % and
= 711, then x) and z, are different points with A < pu. Moreover, T x is
the unique open -neighborhood of x, and the set of open neighborhood
of xyis A ={C1,C1V s, Tx}. Obviously, for each V' € A, we cannot have

VGTx. Thus, (I%,§) isn’t GS-T, in the sense of Definition 4.30. O
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Remark 4.34. The following Example 4.35 shows that our sub-T5 needn’t
be F'T5 in the sense of Definition 4.31. O

Example 4.35. Let (IX,0) be the I-ts defined in Example 4.12. We have
showed that (IX,§) is a sub-T} space in Example 4.12. Now we assert that
(IX,6) isn’t FTy. For the x,y € X with x # y, taking A\ = %, then z\qy,.
The unique neighborhood of z) and yy is T x, moreover T xq 1 x never is
true. Hence (I¥,4) isn’t FTy. O
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