Proyecciones Journal of Mathematics Vol. 31, N° 2, pp. 125-147, June 2012. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172012000200003

Some separation axioms in *L*-topological spaces

CUI-MEI JIANG QINGDAO TECHNOLOGICAL UNIVERSITY, CHINA and

JIN-MING FANG

OCEAN UNIVERSITY OF CHINA, CHINA Received : December 2011. Accepted : January 2012

Abstract

In this paper, under the idea of L- T_0 or sub- T_0 , we propose a set of new separation axioms in L-topological spaces, namely sub-separation axioms. And some of their properties are studied. In addition, the relation between the sub-separation axioms defined in the paper and other separation axioms is discussed. The results show that the subseparation axioms in this paper are weaker than other separation axioms that had appeared in literature.

Keywords : L-topology; sub-separation axioms; sub- T_1 ; sub- T_2 ; sub- $T_{2\frac{1}{2}}$; sub- T_3 ; sub- T_4 .

1. Introduction and preliminaries

Since Chang [1] introduced fuzzy theory into topology, Wong, Lowen, Hutton etc., discussed respectively various aspects of fuzzy topology (Wong [17], Lowen [12], Hutton [6]).

Separation is an essential part of fuzzy topology, on which a lot of work have been done [2–19]. In 1983, Liu [9] introduced the sub- T_0 axiom, for underlying lattice L being a completely distributive DeMorgan algebra, in terms of closed sets and proved that the fuzzy real line and the fuzzy unit interval satisfy this axiom. Wuyts and Lowen [18] and Rodabaugh [13] independently gave a more general L- T_0 axioms, the latter for L being a complete lattice, using only open sets and equivalent to the sub- T_0 when L is a completely distributive DeMorgan algebra. The aim of this paper is to study some separation axioms on the basis of the thought of the sub- T_0 and the layer of L-topology.

Now we recall some the concepts required in the sequel.

Throughout this paper, $(L, \bigvee, \bigwedge, ')$ is a completely distributive DeMorgan algebra, i.e., a complete and completely distributive lattice with an order-reversing involution ()', and with the smallest element \bot and the largest element $\top (\bot \neq \top)$. Obviously, for every nonempty set X, L^X , the family of all *L*-sets, i.e., all mappings from X to L, is also a complete and completely distributive lattice under the pointwise order. we denote the smallest element and the largest element of L^X by \bot_X and \top_X , respectively. For any $A \in L^X$, the set $\{x : A(x) \neq \bot\}$ is called the support of Aand denoted by suppA, i.e., $suppA = \{x : A(x) \neq \bot\}$

An *L*-topological space, briefly *L*-ts, is a pair (L^X, δ) , where δ , called an *L*-topology on L^X , a subfamily of L^X closed under the operation of finite intersections and arbitrary unions, and $\delta' = \{A' : A \in \delta\}$; the member of δ (resp. δ') is called open (resp., closed) *L*-sets, and for each $B \in L^X$, the *L*-set $B^\circ = \bigvee \{U \in \delta : U \leq B\}$ (resp. $B^- = \bigwedge \{C \in \delta' : B \leq C\}$) is called the interior (resp., closure) of *B*. An element $\lambda \in L$ is called a molecule if $\lambda \neq \bot$ and $\lambda \leq a \lor b$ implies $\lambda \leq a$ or $\lambda \leq b$. The set of all molecules of *L* (resp., L^X) will be denoted by M(L) (resp., $M(L^X)$); obviously, $M(L^X) = \{x_\lambda : x \in X, \lambda \in M(L)\}$. For any $x_\lambda \in M(L^X)$, a closed *L*-set $P \in \delta'$ is called a closed remote neighborhood of x_λ if $x_\lambda \not\leq P$. The set of all closed remote neighborhood of x_λ is denoted by $\eta^-(x_\lambda)$. For any $A \in L^X$, a closed *L*-set $P \in \delta'$ is called a closed remote neighborhood of *A* if for any $x \in suppA$ such that $A(x) \not\leq P(x)$. The set of all closed

remote neighborhood of A is denoted by $\eta^{-}(A)$. For any $A \in L^{X}$, A is a called pseudo-crisp closed set if $\exists a \in L - \{\bot\}$ such that $A(x) > \bot$ if and only if $\forall x \in X, A(x) \ge a$.

Let $f: X \longrightarrow Y$ be an ordinary mapping. Based on $f: X \longrightarrow Y$ define an mapping $f^{\rightarrow}: L^X \longrightarrow L^Y$ which is called a function of Zadeh's type and its right adjoint mapping $f^{\leftarrow}: L^Y \longrightarrow L^X$ by

$$\forall A \in L^X, \ \forall y \in Y, \ f^{\rightarrow}(A)(y) = \bigvee \{A(x) : x \in X, f(x) = y\}, \text{ and}$$

 $\forall B \in L^Y, \ \forall x \in X, \ f^{\leftarrow}(B)(x) = B(f(x)), \text{ respectively.}$

For other undefined notions and symbols in this paper, please refer to Wang [16].

Definition 1.1 (Liu [9]). An *L*-ts (L^X, δ) is called a sub- T_0 space if for any $x, y \in X$ with $x \neq y$, there exists $\lambda \in M(L)$, either there is $P \in \eta^-(x_\lambda)$ such that $y_\lambda \leq P$ or there is $Q \in \eta^-(y_\lambda)$ such that $x_\lambda \leq Q$.

Definition 1.2 (Chen and Meng [2]). An *L*-ts (L^X, δ) is called a $T_{2\frac{1}{2}}$ or *L*-Urysohn space if for any $x_{\lambda}, y_{\mu} \in M(L^X)$ with $x \neq y$, there exist $P \in \eta^-(x_{\lambda})$ and $Q \in \eta^-(y_{\mu})$ such that $P^{\circ} \vee Q^{\circ} = \top_X$.

Definition 1.3 (Wang [16]). Let (L^X, δ) be an *L*-ts. Then,

(1) (L^X, δ) is said to be T_1 if for any $x_\lambda, y_\mu \in M(L^X)$ with $x_\lambda \not\leq y_\mu$, there exists $P \in \eta^-(x_\lambda)$ such that $y_\mu \leq P$.

(2) (L^X, δ) is said to be T_2 (or Hausdorff) if for any $x_\lambda, y_\mu \in M(L^X)$ with $x_\lambda \not\leq y_\mu$, there exist $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(y_\mu)$ such that $P \lor Q = \top_X$.

(3) (L^X, δ) is said to be regular if for each $x_\lambda \in M(L^X)$ and each nonempty pseudo-crisp closed set A with $x \notin supp A$, there exist $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(A)$ such that $P \lor Q = \top_X$. (L^X, δ) is said to be T_3 if it is regular and T_1 .

(4) (L^X, δ) is said to be normal if for each pair of nonempty pseudo-crisp closed set A and B with $suppA \cap suppB = \emptyset$, there exist $P \in \eta^-(A)$ and $Q \in \eta^-(B)$ such that $P \lor Q = \top_X$. (L^X, δ) is said to be T_4 if it is normal and T_1 .

Theorem 1.4 (Wang [16], You [19]). $T_i(i = 1, 2, 2\frac{1}{2}, 3, 4)$ is *L*-good extension in Lowen's sense.

Definition 1.5 (Gu and Zhao [4]). An *L*-ts (L^X, δ) is said to be layer T_0 if for any $\alpha \in M(L), (X, (\tau_\alpha(\delta'))')$ is T_0 , where $\tau_\alpha(\delta) = \{\tau_\alpha(A) : A \in I_0\}$

 δ' }, $\tau_{\alpha}(A) = \{x \in X : A(x) \ge \alpha\}$. In the same way, layer $T_i(i = 1, 2, 3, 4)$ and layer regular (completely regular, normal) are defined.

Definition 1.6 (Kubiak [7]). An *L*-ts (L^X, δ) is said to be

(i) Kubiak- T_1 (or L- T_1) if for all $x, y \in X$ with $x \neq y$, there exist $U, V \in \delta$ such that $U(x) \not\leq U(y)$ and $V(y) \not\leq V(x)$.

(ii) Kubiak- T_2 if for all $x, y \in X$ with $x \neq y$, there exist $U, V \in \delta$ such that $U(x) \not\leq U(y)$, $V(y) \not\leq V(x)$ and $U \leq V'$.

Lemma 1.7 (Liu and Luo [10]). Let (L^X, δ) be an *L*-ts, where δ is generated by a classical topology, then for any $A \in L^X$ such that $A^\circ = \bigvee \{ \alpha \chi_{[\tau_\alpha(A)]^\circ} : \alpha \in M(L) \}.$

Definition 1.8 (Shi [14]). An *L*-ts (L^X, δ) is called *L*- T_2 if for all $x, y \in X$ with $x \neq y$, there exist $P \in \delta'$ and $Q \in \delta$ such that $Q \leq P$ and $Q(x) \not\leq P(y)$.

2. Definitions and characterizations

In this section, we introduce the concept of sub- T_1 , sub- T_2 , sub- $T_{2\frac{1}{2}}$, sub- T_3 and sub- T_4 separation axioms in L- topological spaces and establish the characteristic theorems of these sub-separation axioms. First, some definitions are given as follows:

Definition 2.1. Suppose that (L^X, δ) is an *L*-ts. Then,

(1) (L^X, δ) is said to be sub- T_1 if for any $x, y \in X$ with $x \neq y$, there exists $\lambda \in M(L)$, both there is $P \in \eta^-(x_\lambda)$ such that $y_\lambda \leq P$ and there is $Q \in \eta^-(y_\lambda)$ such that $x_\lambda \leq Q$.

(2) (L^X, δ) is said to be sub- T_2 if for any $x, y \in X$ with $x \neq y$, there exists $\lambda \in M(L)$, and there are $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(y_\lambda)$ such that $P \lor Q = \top_X$.

(3) (L^X, δ) is said to be sub- $T_{2\frac{1}{2}}$ if for any $x, y \in X$ with $x \neq y$, there exists $\lambda \in M(L)$, and there are $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(y_\lambda)$ such that $P^{\circ} \vee Q^{\circ} = \top_X$.

(4) (L^X, δ) is said to be sub-regular if for each $x \in X$ and each nonempty pseudo-crisp closed set A with $x \notin suppA$, there exists $\lambda \in M(L)$, and there are $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(\lambda A)$ such that $P \vee Q = \top_X$. (L^X, δ) is said to be sub- T_3 if it is sub-regular and sub- T_1 .

(5) (L^X, δ) is said to be sub-normal if for each pair of nonempty pseudo-

crisp closed set A and B with $suppA \cap suppB = \emptyset$, there exists $\lambda \in M(L)$, and there are $P \in \eta^-(\lambda A)$ and $Q \in \eta^-(\lambda B)$ such that $P \vee Q = \top_X$, where $\lambda A(x) = \lambda \wedge A(x)$ for any $x \in X$. (L^X, δ) is said to be sub- T_4 if it is sub-normal and sub- T_1 .

By Definition 2.1, we have:

Corollary 2.2. The following implications hold: $T_i \Longrightarrow \text{sub-} T_i$, where $i = 1, 2, 2\frac{1}{2}, 3, 4$.

Now we introduce the convergence of molecular nets. Let (L^X, δ) be an *L*-ts, $S = \{S(n) : n \in D\}$ a molecular net and $e \in M(L^X)$, *e* is said to be a limit point of *S*, (or *S* converges to *e*; in symbols, $S \to e$), if for $\forall P \in \eta^-(e), S(n) \not\leq P$ is eventually true, that is there exists $m \in D$ such that $S(n) \not\leq P$ for all $n \in D$ with $n \geq m$. The following results show that the convergence of molecular nets is unique under a certain condition for the sub- T_2 space.

Theorem 2.3. Let (L^X, δ) be a sub- T_2 space, then for each molecular net S such that $|K_S| \leq 1$, where $K_S = \{x \in X : \lim S(x) = \top\}$.

Proof. Let (L^X, δ) be a sub- T_2 space and $S = \{S(n) : n \in D\}$ be a molecular net. Assume that $|K_S| \geq 2$, for any $x, y \in K_S$ with $x \neq y$, since (L^X, δ) is sub- T_2 , there exists $\lambda \in M(L)$, and there are $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(y_\lambda)$ such that $P \lor Q = \top_X$. Then we have $S \to x_\lambda$ and $S \to y_\lambda$ from $x_\lambda \leq \lim S$ and $y_\lambda \leq \lim S$ by Theorem 2.3.4 (Wang [16]). So there exists an $n_1 \in D$ such that $S(n) \not\leq P$ for all $n \in D$ with $n \geq n_1$ and there exists an $n_2 \in D$ such that $S(n) \not\leq Q$ for all $n \in D$ with $n \geq n_2$. Taking $n_3 \in D$ such that $n_3 \geq n_1$ and $n_3 \geq n_2$, hence we have $S(n) \not\leq P \lor Q$ when $n \geq n_3$. This implies that we must have $P \lor Q \neq \top_X$. This is a contradiction. \Box

If \top is a molecule, the inverse of Theorem 2.3 is also true.

Theorem 2.4. (L^X, δ) is an *L*-ts, if for each molecular net *S* with $|K_S| \leq 1$, where $K_S = \{x \in X : \lim S(x) = \top\}$, then (L^X, δ) is a sub-*T*₂ space.

Proof. Suppose that (L^X, δ) is not a sub- T_2 space, then there exist $x, y \in X$ satisfying $x \neq y, \forall \lambda \in M(L), \forall P \in \eta^-(x_\lambda)$ and $\forall Q \in \eta^-(y_\lambda)$ such that $P \lor Q \neq \top_X$. Let $D(\lambda) = \eta^-(x_\lambda) \times \eta^-(y_\lambda)$ and $D(\lambda)$ be a directed set by

product order. For each $m = (P, Q) \in D(\lambda)$, we can take a molecule $S^{\lambda}(m)$ such that $S^{\lambda}(m) \not\leq P \lor Q$. Let $S^{\lambda} = \{S^{\lambda}(m) : m \in D(\lambda)\}$, hence it is easy to prove $S^{\lambda} \to x_{\lambda}$ and $S^{\lambda} \to y_{\lambda}$. Therefore, $\lim S^{\lambda} \geq x_{\lambda} \lor y_{\lambda}$. Since \top is a molecule, the standard minimal set $\beta^{*}(\top)$ is a directed set(Wang [16]). We denote $\beta^{*}(\top)$ by E, i.e., $E = \beta^{*}(\top)$. Noticing that $\{x_{\lambda}\}_{\lambda \in E}, \{y_{\lambda}\}_{\lambda \in E}$ are molecular nets and $\{x_{\lambda}\}_{\lambda \in E} \to x_{\top}, \{y_{\lambda}\}_{\lambda \in E} \to y_{\top}$, we can make a molecular net $\overline{S} : E \times \prod_{\lambda \in E} D(\lambda) \longrightarrow M(L^{X})$ such that

$$\bar{S}(\lambda, f) = S^{\lambda}(f(\lambda)) , \quad \forall (\lambda, f) \in E \times \prod_{\lambda \in E} D(\lambda).$$

Then, $\overline{S} \to x_{\top}$, $\overline{S} \to y_{\top}$. In fact, for every $P \in \eta^{-}(x_{\top})$, since $\{x_{\lambda}\}_{\lambda \in E} \to x_{\top}$, there exists a $\lambda_0 \in E$ such that $x_{\lambda} \not\leq P$ for all $\lambda \in E$ with $\lambda \geq \lambda_0$. It follows from $S^{\lambda} \to x_{\lambda}$ for $\lambda \in E$ that there exists $m_{\lambda} \in D(\lambda)$ s.t. $S^{\lambda}(m) \not\leq P$ for all $m \in D(\lambda)$ with $m \geq m_{\lambda}$. We define $f_0 \in \prod_{\lambda \in E} D(\lambda)$ as follows:

$$f_0(\lambda) = \begin{cases} m_{\lambda}, & \lambda \leq \lambda_0. \\ \text{any fixed element in } D(\lambda), & \lambda \nleq \lambda_0. \end{cases}$$

Then we can prove for every pair $(\lambda, f) \in E \times \prod_{\lambda \in E} D(\lambda)$ with $(\lambda, f) \geq (\lambda_0, f_0)$ such that $\bar{S}(\lambda, f) \not\leq P$, i.e., \bar{S} is not in any closed remote neighborhood P of x_{\top} eventually. So we have $\bar{S} \to x_{\top}$. Similarly, we can prove $\bar{S} \to y_{\top}$. Therefore, $|K_{\bar{S}}| \geq 2$. This contradicts to $|K_{\bar{S}}| \leq 1$. Thus, we conclude that (L^X, δ) is a sub- T_2 space. \Box

With Theorem 2.3 and Theorem 2.4, we have:

Corollary 2.5. Let \top be a molecule, then (L^X, δ) is a sub- T_2 space iff for each molecular net S such that $|K_S| \leq 1$, where $K_S = \{x \in X : \lim S(x) = \top\}$.

For the sub- T_2 space, we have the following theorem:

Theorem 2.6. Let (L^X, δ) be a sub- T_2 space and \top be a molecule, then super F-compactness, N-compactness, strongly F-compactness and F-compactness are equivalent.

Proof. The proof is similar to that of Wang's Theorem 6.4.29 in [16].

Theorem 2.7. Suppose that (L^X, δ) is a weakly induced *L*-ts. If it is a sub- T_2 space, then $(X, [\delta])$ is a T_2 space.

Proof. Let (L^X, δ) be a sub- T_2 space and $x, y \in X$ with $x \neq y$. Then there exists $\lambda \in M(L)$, and there are $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(y_\lambda)$ such that $P \lor Q = \top_X$. We put

$$U = \{t \in X : P'(t) \not\leq \lambda'\} = \{t \in X : P(t) \not\geq \lambda\}, \text{ and}$$
$$V = \{t \in X : Q'(t) \not\leq \lambda'\} = \{t \in X : Q(t) \not\geq \lambda\}.$$

Then it is easy to know that $\chi_U, \chi_V \in \delta$ i.e., $U, V \in [\delta]$. Obviously $x \in U, y \in V$. Thus it remains only to show that $U \cap V = \emptyset$. In fact, if there were a $z \in U \cap V$, then we have $\lambda \not\leq P(z)$ and $\lambda \not\leq Q(z)$. Hence, $\lambda \not\leq (P \lor Q)(z)$, which contradicts to $P \lor Q = \top_X$. Therefore, $(X, [\delta])$ is a T_2 space.

3. Properties

In this section, we will investigate some nice properties of sub-separation axioms. At first, we show that sub-separation axioms are good extensions in the sense of Lowen.

Theorem 3.1. Let (X, \mathcal{T}) be a crisp topological space. Then $(L^X, \omega_L(\mathcal{T}))$ is a sub- T_i space iff (X, \mathcal{T}) is a T_i space, where $i = 1, 2, 2\frac{1}{2}, 3, 4$.

Proof. Sufficiency. Let (X, \mathcal{T}) be a T_i space $(i=1, 2, 2\frac{1}{2}, 3, 4)$. Then $(L^X, \omega_L(\mathcal{T}))$ is a T_i space by Theorem 1.4. Thus from Corollary 2.2, we know that $(L^X, \omega_L(\mathcal{T}))$ is a sub- T_i space.

Necessity. Case i=1: Let $(L^X, \omega_L(\mathcal{T}))$ be a sub- T_1 space. For any $x \in X$ and taking $y \in X$ with $x \neq y$, since $(L^X, \omega_L(\mathcal{T}))$ is a sub- T_1 space, there exists $\lambda \in M(L)$, both there is $P \in \eta^-(y_\lambda)$ such that $x_\lambda \leq P$ and there is $Q \in \eta^-(x_\lambda)$ such that $y_\lambda \leq Q$. We put

$$U = \{ z \in X : P'(z) \not\leq \lambda' \}.$$

It is clear that $U \in \mathcal{T}, x \notin U$ and $y \in U$. Hence $y \notin \{x\}^-$, where $\{x\}^-$ is the closure of $\{x\}$. Therefore, (X, \mathcal{T}) is a T_1 space.

Case i=2: For any two distinct points $x, y \in X$ with $x \neq y$, since $(L^X, \omega_L(\mathcal{T}))$ is a sub- T_2 space, there exists $\lambda \in M(L)$, and there are $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(y_\lambda)$ such that $P \lor Q = \top_X$. We put

$$U = \{ z \in X : P'(z) \not\leq \lambda' \}, \quad V = \{ z \in X : Q'(z) \not\leq \lambda' \}.$$

Noticing that $P', Q' \in \omega_L(\mathcal{T})$ and $x_\lambda \not\leq P$, $y_\lambda \not\leq Q$, hence $U, V \in \mathcal{T}$ and $x \in U, y \in V$. Thus it remains only to show that $U \cap V = \emptyset$. In fact, if there were a $z \in U \cap V \neq \emptyset$, then we have $\lambda \not\leq P(z)$ and $\lambda \not\leq Q(z)$. Hence $\lambda \not\leq (P \lor Q)(z) = \top$, which contradicts to $\lambda \leq \top$. Therefore, (X, \mathcal{T}) is a T_2 space.

Case $i = 2\frac{1}{2}$: For any $x, y \in X$ with $x \neq y$, since $(L^X, \omega_L(T))$ is a sub- $T_2\frac{1}{2}$ space, there exists $\lambda \in M(L)$, and there are $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(y_\lambda)$ such that $P^\circ \vee Q^\circ = \top_X$. Clearly, $P \vee Q = \top_X$. From $\lambda \not\leq P(x)$ and $\lambda \not\leq Q(y)$, we know that there exist $\lambda_P \in \beta^*(\lambda)$ and $\lambda_Q \in \beta^*(\lambda)$ such that $\lambda_P \not\leq P(x)$ and $\lambda_Q \not\leq Q(y)$. Since λ is a molecule, the standard minimal set $\beta^*(\lambda)$ is a directed set (Wang [16]). Taking $\gamma \in \beta^*(\lambda)$ such that $\gamma \geq \lambda_P \vee \lambda_Q$. We put

$$E = \tau_{\gamma}(P) = \{z : P(z) \ge \gamma\}, \ F = \tau_{\gamma}(Q) = \{z : Q(z) \ge \gamma\}.$$

It is clear that $E, F \in \mathcal{T}', x \notin E, y \notin F$ and $E \cup F = X$. In order to prove that (X, \mathcal{T}) is a $T_2 \frac{1}{2}$ space, we need only to verify $E^{\circ} \cup F^{\circ} = X$ by the definition of $T_2 \frac{1}{2}$. For this purpose, we firstly prove that $\tau_{\lambda}(P^{\circ}) \subseteq [\tau_{\gamma}(P)]^{\circ}$ and $\tau_{\lambda}(Q^{\circ}) \subseteq [\tau_{\gamma}(Q)]^{\circ}$. In fact, taking $z \in \tau_{\lambda}(P^{\circ})$, from Lemma 1.7, we have

$$\bigvee_{\alpha \in M(L)} \alpha \chi_{[\tau_{\alpha}(P)]^{\circ}}(z) = P^{\circ}(z) \ge \lambda .$$

Therefore, there exists $\alpha \in M(L)$ such that $z \in [\tau_{\alpha}(P)]^{\circ}$ and $\alpha \geq \gamma$. i.e., $z \in [\tau_{\alpha}(P)]^{\circ} \subseteq [\tau_{\gamma}(P)]^{\circ}$. Hence, we obtain that $\tau_{\lambda}(P^{\circ}) \subseteq [\tau_{\gamma}(P)]^{\circ}$ from the arbitrariness of z. Similarly, we can get $\tau_{\lambda}(Q^{\circ}) \subseteq [\tau_{\gamma}(Q)]^{\circ}$, as desired. Naturally, we have

$$E^{\circ} \cup F^{\circ} = [\tau_{\gamma}(P)]^{\circ} \cup [\tau_{\gamma}(Q)]^{\circ} \supseteq \tau_{\lambda}(P^{\circ}) \cup \tau_{\lambda}(Q^{\circ}) = \tau_{\lambda}(P^{\circ} \vee Q^{\circ}) = X,$$

i.e., (X, \mathcal{T}) is a $T_{2\frac{1}{2}}$ space.

Case i=3: Since sub- T_1 separation axiom is an L-good extension, we prove this theorem only for the sub-regular case.

For any $x \in X$, suppose that $E \in \mathcal{T}'$ with $x \notin E$. Clearly, χ_E is a nonempty pseudo-crisp closed set in $(L^X, \omega_L(\mathcal{T}))$ and $x \notin supp(\chi_E)$. Since

 $(L^X, \omega_L(\mathcal{T}))$ is a sub-regular space, there exists $\lambda \in M(L)$, and there are $P \in \eta^{-}(x_{\lambda})$ and $Q \in \eta^{-}(\lambda \chi_{E})$ such that $P \vee Q = \top_{X}$. Ι

$$U = \{ z : P'(z) \not\leq \lambda' \}, \ V = \{ z : Q'(z) \not\leq \lambda' \}.$$

It is easy to verify that $x \in U$, $E \subseteq V$ and $U \cap V = \emptyset$ $(U, V \in \mathcal{T})$. Therefore, (X, \mathcal{T}) is a regular space.

Case i=4: the proof is similar to that of the case i=3. \Box

Now we consider the heredity of the sub-separation. The following results show that sub- T_i $(i=1, 2, 2\frac{1}{2})$ separation axioms are hereditary. Firstly, the concept of the extension is introduced. Let $Y \subseteq X, A \in L^Y$. $A^* \in L^X$ is defined as follows: $\forall x \in X$,

$$A^*(x) = \begin{cases} A(x), & x \in Y. \\ 0, & x \notin Y. \end{cases}$$

Then A^* is called the extension of A.

Theorem 3.2. Let (L^X, δ) be L-ts and Y be a nonempty crisp subset of X. If (L^X, δ) is a sub- T_i space, then the subspace $(L^Y, \delta | Y)$ is also a sub- T_i space, where $\delta | Y = \{ G | Y : G \in \delta \}, i = 1, 2, 2\frac{1}{2}$.

Proof. We only prove the case i=2 and $i=2\frac{1}{2}$.

Case i=2: Let $x, y \in Y$ with $x \neq y$. Since (L^X, δ) is a sub- T_2 space, there exists $\lambda \in M(L)$, and there are $P \in \eta^{-}(x_{\lambda}^{*})$ and $Q \in \eta^{-}(y_{\lambda}^{*})$ such that $P \vee Q = \top_X$, where x_{λ}^* , y_{λ}^* are the extensions of x_{λ} , y_{λ} , respectively. Notice that $P \in \eta^-(x_\lambda^*)$ implies that $P|Y \in \eta^-(x_\lambda)$. Similarly, $Q|Y \in$ $\eta^{-}(y_{\lambda})$. Therefore, there exists $\lambda \in M(L)$ and there are $P|Y \in \eta^{-}(x_{\lambda})$ and $Q|Y \in \eta^{-}(y_{\lambda})$ such that $(P|Y) \vee (Q|Y) = \top_{Y}$, i.e., $(L^{Y}, \delta|Y)$ is also a sub- T_2 space.

Case $i = 2\frac{1}{2}$: Suppose that $x, y \in Y$ with $x \neq y$. Since (L^X, δ) is a sub- $T_{2\frac{1}{2}}$ space, there exists $\lambda \in M(L)$, and there are $P \in \eta^-(x^*_{\lambda})$ and $Q \in \eta^{2}(y_{\lambda}^{*})$ such that $P^{\circ} \vee Q^{\circ} = \top_{X}$, where $x_{\lambda}^{*}, y_{\lambda}^{*}$ is the extensions of x_{λ}, y_{λ} , respectively. Noticing that $P \in \eta^{-}(x_{\lambda}^{*})$ implies that $P|Y \in \eta^{-}(x_{\lambda})$ and $Q \in \eta^{-}(y_{\lambda}^{*})$ implies that $Q|Y \in \eta^{-}(y_{\lambda})$, then we have that there exists $\lambda \in M(L)$ and there are $P|Y \in \eta^-(x_\lambda)$ and $Q|Y \in \eta^-(y_\lambda)$. Hence we need only to show that $(P|Y)^{\circ} \lor (Q|Y)^{\circ} = \top_Y$. In fact, from $(P|Y)^{\circ} \ge (P^{\circ}|Y)$,

we get that

$$(P|Y)^{\circ} \lor (Q|Y)^{\circ} \ge (P^{\circ}|Y) \lor (Q^{\circ}|Y) = \top_{Y}.$$

Thus $(L^Y, \delta | Y)$ is also a sub- $T_2 \frac{1}{2}$ space. \Box

Theorem 3.3. Let (L^X, δ) be *L*-ts, *Y* be a nonempty crisp subset of X and $\chi_Y \in \delta'$. If (L^X, δ) is a sub- T_i space, then the subspace $(L^Y, \delta|Y)$ is also a sub- T_i space, where i = 3, 4.

Proof. We only prove this theorem only for the case i=3. Since sub- T_1 separation axiom is hereditary, we prove the theorem only for the sub-regular case.

Let *B* be a nonempty pseudo-crisp closed set in $(L^Y, \delta|Y)$ and $y \in Y$ with $y \notin supp B$. Since $B \in (\delta|Y)' = \delta'|Y$, there exists $A \in \delta'$ such that B = A|Y. And we have $B = B^*|Y$, where B^* is the extension of B. It is easy to prove that $B^* = A \wedge \chi_Y$ and B^* is a nonempty pseudo-crisp closed set. By the sub-regularity of (L^X, δ) and $y \notin supp B^*$, there exists $\lambda \in M(L)$, and there are $P \in \eta^-(y^*_\lambda)$ and $Q \in \eta^-(\lambda B^*)$ such that $P \vee Q = \top_X$, where y^*_λ is the extension of y_λ . Then we know that $P|Y \in \eta^-(y_\lambda)$ and $Q|Y \in \eta^-(\lambda B)$ such that $(P|Y) \vee (Q|Y) = \top_Y$. This shows $(L^Y, \delta|Y)$ is also a sub-regular space. Therefore, the proof of the theorem is complete. \Box

In the end of this section, we show that sub- T_i $(i=1, 2, 2\frac{1}{2})$ separation axioms are productive. First, a lemma is needed.

Lemma 3.4. Let (L^X, δ) , (L^Y, μ) be two *L*-ts, $f^{\rightarrow} : (L^X, \delta) \rightarrow (L^Y, \mu)$ be a closed bijection and $f^{\rightarrow}, f^{\leftarrow}$ be continuous. If (L^X, δ) is a sub- T_i space, then so is (L^Y, μ) , where $i = 1, 2, 2\frac{1}{2}, 3, 4$.

Proof. We prove the theorem only for the case i=1 and i=3.

Case i=1: For any $y, z \in Y$ with $y \neq z$, since f is a closed bijection, there are $u, v \in X$ with $u \neq v$ such that f(u) = y, f(v) = z. Since (L^X, δ) is a sub- T_1 space, there exists $\lambda \in M(L)$, both there is $P \in \eta^-(u_\lambda)$ such that $v_\lambda \leq P$ and there is $Q \in \eta^-(v_\lambda)$ such that $u_\lambda \leq Q$. Therefore,

$$y_{\lambda} = f^{\rightarrow}(u_{\lambda}) \not\leq f^{\rightarrow}(P), \ z_{\lambda} = f^{\rightarrow}(v_{\lambda}) \leq f^{\rightarrow}(P), \text{ and}$$

 $z_{\lambda} = f^{\rightarrow}(v_{\lambda}) \not\leq f^{\rightarrow}(Q), \ y_{\lambda} = f^{\rightarrow}(u_{\lambda}) \leq f^{\rightarrow}(Q).$

From $P, Q \in \delta'$ and f^{\leftarrow} is continuous, we have $f^{\rightarrow}(P) \in \eta^{-}(y_{\lambda})$ and $f^{\rightarrow}(Q) \in \eta^{-}(z_{\lambda})$. Hence, (L^{Y}, μ) is a sub- T_{1} space.

Case i=3: For any $y \in Y$ and nonempty pseudo-crisp closed set $A \in \mu'$ with $y \notin supp A$. Since f is closed bijection, there exist $x \in X, B \in \delta'$ such that f(x) = y, f(B) = A i.e., $x = f^{-1}(y), B = f^{\leftarrow}(A)$. We have $B \in \delta'$ from f^{\rightarrow} is continuous. It is easy to prove that B is a nonzero pseudo-crisp closed set. From $y \notin supp A$, we have:

$$\begin{array}{ll} y \not\in suppA \Rightarrow A(y) = \bot & \Rightarrow A(f(x)) = \bot & (f(x) = y) \\ & \Rightarrow f^{\leftarrow}(A)(x) = \bot & (\text{by the definition of } f^{\leftarrow}) \\ & \Rightarrow x \not\in suppf^{\leftarrow}(A) = suppB. \end{array}$$

For $x \in X$ and $B \in \delta'$ with $x \notin suppB$, since (L^X, δ) is a sub- T_3 space, there exists $\lambda \in M(L)$, and there are $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(\lambda B)$ such that $P \lor Q = \top_X$.

Therefore, $y_{\lambda} = f^{\rightarrow}(x_{\lambda}) \not\leq f^{\rightarrow}(P), \ \lambda A = \lambda f^{\rightarrow}(B) \not\leq f^{\rightarrow}(Q), \ f^{\rightarrow}(P) \lor f^{\rightarrow}(Q) = \top_{Y}$. From $P \in \delta'$ and f^{\leftarrow} is continuous, we have $f^{\rightarrow}(P) \in \eta^{-}(y_{\lambda})$ and $f^{\rightarrow}(Q) \in \eta^{-}(\lambda A)$. Thus, (L^{Y}, μ) is a sub- T_{3} space. \Box

Theorem 3.5. Let $\{(L^{X_t}, \delta_t)\}_{t \in T}$ be a family of *L*-ts and (L^X, δ) be a product topological space. If for any $t \in T$, (L^{X_t}, δ_t) is a sub- T_i space, then so is (L^X, δ) . If (L^X, δ) is a sub- T_i space and (L^{X_t}, δ_t) is a fully stratified space, then so is (L^{X_t}, δ_t) , where $i = 1, 2, 2\frac{1}{2}$.

Proof. We only prove the case i=2, other cases are obtained in the similar way.

Necessity. Suppose that $\{(L^{X_t}, \delta_t)\}_{t\in T}$ is a family of sub- T_2 space. Let $\forall x = \{x^t\}_{t\in T}, y = \{y^t\}_{t\in T} \in X \text{ with } x \neq y, \text{ then there exists a } r \in T$ such that $x^r \neq y^r$. Since (L^{X_r}, δ_r) is a sub- T_2 space, there exists $\lambda \in M(L)$, and there are $B_r \in \eta^-(x^r_\lambda), C_r \in \eta^-(y^r_\lambda)$ such that $B_r \vee C_r = \top_{X_r}$. Clearly, $P_r^{\leftarrow}(B_r), P_r^{\leftarrow}(C_r) \in \delta', P_r^{\leftarrow}(B_r)(x) = B_r(x^r) \not\geq \lambda$ and $P_r^{\leftarrow}(C_r)(y) = C_r(y^r) \not\geq \lambda$. Furthermore, $x_\lambda \not\leq P_r^{\leftarrow}(B_r), y_\lambda \not\leq P_r^{\leftarrow}(C_r)$ and $P_r^{\leftarrow}(B_r) \vee P_r^{\leftarrow}(C_r) = \top_X$. Hence, we prove that (L^X, δ) is a sub- T_2 space.

Sufficiency. Let (L^X, δ) be a sub- T_2 space and (L^{X_r}, δ_r) be a fully stratified space, where $r \in T$. For any $x = \{x^t\}_{t \in T} \in X$, from Theorem 2.8.9 (Wang [16]), $(L^{\tilde{X}_r}, \delta | \tilde{X}_r)$ which is parallel to (L^{X_r}, δ_r) through x is homeomorphic to (L^{X_r}, δ_r) . Since $(L^{\tilde{X}_r}, \delta | \tilde{X}_r)$ is a sub- T_2 space as a subspace of $(L^X, \delta), (L^{X_r}, \delta_r)$ is a sub- T_2 space from Lemma 3.4. \Box The next result follows from the above Theorem.

Corollary 3.6. Let $\{(L^{X_t}, \omega_L(\mathcal{T}_t))\}_{t\in T}$ be a family of *L*-ts topologically generated by a family of topological spaces $\{(X_t, \mathcal{T}_t)\}_{t\in T}$ and $(L^X, \omega_L(\mathcal{T}))$ be a product *L*-ts of $\{(L^{X_t}, \omega_L(\mathcal{T}_t))\}_{t\in T}$. Then $(L^X, \omega_L(\mathcal{T}))$ is a sub- T_i space iff for $\forall t \in T, (L^{X_t}, \omega_L(\mathcal{T}_t))$ is a sub- T_i space, where $\mathcal{T} = \prod_{t\in T} \mathcal{T}_t$, $i = 1, 2, 2\frac{1}{2}$.

4. The relations with respect to other separation axioms.

In this section, we make a comparison between separation axioms defined in this paper and those presented by Chen and Meng [2], Fang and Ren [3], Gu and Zhao [4], Ganguly and Saha [5], Kubiak [7], Kandil and El-Shafee [8], Shi [14], Shi and Chen [15] and Wang [16], and offer a lot of examples to show the relations between them. At first, we show that the sub-separation axioms defined in this paper are harmonious.

From Definition 2.1, the following theorem is obvious.

Theorem 4.1. Let (L^X, δ) be an *L*-ts. Then the following implications hold:

(1) sub- $T_1 \Rightarrow$ sub- T_0

(2) sub- $T_4 \Rightarrow$ sub- $T_3 \Rightarrow$ sub- T_2

Theorem 4.2. Let (L^X, δ) be an *L*-ts. Then sub- $T_2 \Rightarrow$ sub- T_1 .

Proof. Suppose that (L^X, δ) is a sub- T_2 space. For any $x, y \in X$ with $x \neq y$, since (L^X, δ) is a sub- T_2 space, there exists $\lambda \in M(L)$, and there are $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(y_\lambda)$ such that $P \lor Q = \top_X$. From $y_\lambda \leq P \lor Q$ and $y_\lambda \not\leq Q$, we have $y_\lambda \leq P$. Similarly, on account of $x_\lambda \leq P \lor Q$ and $x_\lambda \not\leq P$, then $x_\lambda \leq Q$. Hence, for any $x \in X$ with $x \neq y$, there exists $\lambda \in M(L)$, both there is $P \in \eta^-(x_\lambda)$ such that $y_\lambda \leq P$ and there is $Q \in \eta^-(y_\lambda)$ such that $x_\lambda \leq Q$, i.e., (L^X, δ) is a sub- T_1 space. \Box

From Theorem 4.1 and 4.2, we obtain the following result that shows the sub-separation axioms are harmonious.

Corollary 4.3. sub- $T_4 \Rightarrow$ sub- $T_3 \Rightarrow$ sub- $T_2 \Rightarrow$ sub- $T_1 \Rightarrow$ sub- T_0 .

Theorem 4.4. Let (L^X, δ) be an *L*-ts. Then sub- $T_2 \frac{1}{2} \Rightarrow$ sub- T_2 .

Proof. Let (L^X, δ) be a sub- $T_2 \frac{1}{2}$ space. For any $x, y \in X$ with $x \neq y$, since (L^X, δ) is a sub- $T_2 \frac{1}{2}$ space, there exists $\lambda \in M(L)$, and there are $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(y_\lambda)$ such that $P^\circ \vee Q^\circ = \top_X$. Noticing that $P^\circ \vee Q^\circ \leq P \vee Q$, we get that $P \vee Q = \top_X$. Therefore, (L^X, δ) is a sub- T_2 space. \Box

The following example shows that the *L*-unit interval I(L) need not satisfy the sub- T_1 axiom.

Example 4.5. The [0,1]-real line [0,1](I) does not satisfy sub- T_1 axiom. In fact, take $x, y \in [0,1](I)$ satisfying $\forall t \in R$

$$x(t) = \begin{cases} 1, & t \in (-\infty, 0), \\ 0.5, & t \in [0, 1], \\ 0, & t \in (1, +\infty), \end{cases} \quad y(t) = \begin{cases} 1, & t \in (-\infty, 0), \\ 0.6, & t \in [0, 1], \\ 0, & t \in (1, +\infty). \end{cases}$$

For convenience, we only consider P or Q which has the forms of $R'_s \lor L'_t$. Case I: When $0 < \lambda \leq 0.4$, we have that

$$\varepsilon(x_{\lambda}) = \vee\{t \mid x_{\lambda} \le L'_t\} = \vee\{t \mid \lambda \le x(t-)\} = 1;$$

$$\sigma(x_{\lambda}) = \wedge\{s \mid x_{\lambda} \le R'_s\} = \wedge\{s \mid \lambda \le x(s+)'\} = 0.$$

Hence,

$$x_{\lambda} \not\leq L'_{t} \lor R'_{s} \Rightarrow t > 1, s < 0.$$

Then we get that

$$(L'_t \vee R'_s)(y) = 0$$
 from $t > 1, s < 0.$

Naturally, we obtain that $y_{\lambda} \not\leq L'_t \lor R'_s$. Case II: When $0.4 < \lambda \leq 0.5$, we have that

$$\varepsilon(x_{\lambda}) = \vee \{t \mid x_{\lambda} \le L'_t\} = 1; \quad \sigma(x_{\lambda}) = \wedge \{s \mid x_{\lambda} \le R'_s\} = 0.$$

Hence,

$$x_{\lambda} \not\leq L_{t}^{'} \lor R_{s}^{'} \Rightarrow t > 1, s < 0.$$

Then we get that

$$(L'_t \vee R'_s)(y) = 0 \text{ from } t > 1, s < 0 \Rightarrow y_\lambda \not\leq L'_t \vee R'_s.$$

Case III: When $0.5 < \lambda \leq 0.6$, we have that

$$\varepsilon(y_{\lambda}) = \vee \{t \mid x_{\lambda} \le L'_t\} = 1; \quad \sigma(y_{\lambda}) = \wedge \{s \mid y_{\lambda} \le R'_s\} = 1.$$

Hence,

$$y_{\lambda} \not\leq L'_{t} \lor R'_{s} \Rightarrow t > 1, s < 1.$$

Then we get that

$$(L'_t \lor R'_s)(x) \le 0 \lor 0.5 = 0.5 \text{ from } t > 1, s < 1 \Rightarrow x_\lambda \not\le L'_t \lor R'_s.$$

Case IV: When $0.6 < \lambda \leq 1$, we have that

$$\varepsilon(x_{\lambda}) = \vee \{t \mid x_{\lambda} \le L'_t\} = 0; \quad \sigma(x_{\lambda}) = \wedge \{s \mid x_{\lambda} \le R'_s\} = 1.$$

Hence,

$$x_{\lambda} \not\leq L'_{t} \lor R'_{s} \Rightarrow t > 0, s < 1.$$

Then we get that

$$(L'_t \vee R'_s)(y) \le 0.5 \vee 0.4 = 0.5 \text{ from } t > 0, s < 1 \Rightarrow y_\lambda \not\le L'_t \vee R'_s.$$

From case I, II, III and IV, we have that [0,1](I) does not satisfy the sub- T_1 axiom. \Box

Remark 4.6. From the above example, we know that the *L*-unit interval need not satisfy the sub- T_1 axiom. So the *L*-unit interval is not compatible with the sub-separation axioms proposed in this paper.

Next we make a comparison between the sub-separation axioms and those presented by Kubiak [7].

Theorem 4.7. Let (L^X, δ) be an *L*-ts. Then sub- $T_1 \Rightarrow$ Kubiak- T_1 .

Proof. Let (L^X, δ) be sub- T_1 . In order to prove that (L^X, δ) is Kubiak- T_1 , take $x, y \in X$ with $x \neq y$. Then there exists $\lambda \in M(L)$, and there are $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(y_\lambda)$ such that $y_\lambda \leq P$, $x_\lambda \leq Q$, respectively. Taking U = P', V = Q', we have that $U, V \in \delta$, $U(x) \not\leq U(y)$ and $V(y) \not\leq V(x)$. Therefore, (L^X, δ) is Kubiak- T_1 . \Box

In general, Kubiak- T_1 need not imply our sub- T_1 . This can be seen from the following example.

Example 4.8. Let $L=\{\perp, a, b, \top\}$ satisfy $a \lor b = \top$, $a \land b = \bot$, a' = band $X = \{x, y\}$ with $x \neq y$. Take $\delta = \{\bot_X, \top_X, x_a, y_b, x_a \lor y_b\}$, then $\delta' = \{\bot_X, \top_X, M, N, R\}$, where M, N and R are defined as follows:

$$M(x) = b, \ M(y) = \top; \ N(x) = \top, \ N(y) = a; \ R(x) = b, \ R(y) = a.$$

We can prove that (L^X, δ) is not $\operatorname{sub} T_1$, but it is Kubiak- T_1 . Now we show that (L^X, δ) is not $\operatorname{sub} T_1$. We need to show that $\forall \lambda \in M(L)$, $\forall P \in \eta^-(x_\lambda)$ such that $y_\lambda \not\leq P$, or $\forall Q \in \eta^-(y_\lambda)$ such that $x_\lambda \not\leq Q$. In fact, we have that $P \in \eta^-(x_\lambda) = \{\bot_X, M, R\}$, $Q \in \eta^-(y_\lambda) = \{\bot_X\}$ when $\lambda = a$. Hence we get that $x_\lambda \not\leq Q$. Similarly, we have that $P \in \eta^-(x_\lambda) = \{\bot_X\}$, $Q \in \eta^-(y_\lambda) = \{\bot_X, N, R\}$ when $\lambda = b$. Then we obtain that $y_\lambda \not\leq P$. Therefore (L^X, δ) is not $\operatorname{sub} T_1$. Next we show that (L^X, δ) is Kubiak- T_1 . Taking $U = x_a, V = y_b$, we get that $U, V \in \delta$, $U(x) \not\leq U(y)$ and $V(y) \not\leq V(x)$. \Box

Theorem 4.9. Let (L^X, δ) be an *L*-ts and \top be a molecule. Then sub- $T_2 \Rightarrow$ Kubiak- T_2 .

Proof. For any $x, y \in X$ with $x \neq y$, since (L^X, δ) is a sub- T_2 space, there exists $\lambda \in M(L)$, there are $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(y_\lambda)$ such that $P \lor Q = \top_X$. Taking U = P', V = Q', we have that $U, V \in \delta, U(x) \not\leq U(y)$ and $V(y) \not\leq V(x)$. Now we only need to prove that $U \leq V'$ i.e. $P' \leq Q$. In fact, since $P \lor Q = \top_X$ and \top is a molecule, we have that $P(x) = \top$ or $Q(x) = \top$ for $\forall x \in X$. Easily we get $P' \leq Q$ i.e. $U \leq V'$. Therefore (L^X, δ) is a Kubiak- T_2 space.

Remark 4.10. If \top is not a molecule, is Theorem 4.9 true? We leave it as an open problem. Generally, Kubiak- T_2 need not imply sub- T_2 (seeing Example 4.11 below). \Box

Example 4.11. Let L=[0,1] and $X = \{x, y\}$. Take $\delta = \{\perp_X, \top_X, A, B, 0.3^*, 0.7^*\}$, where A, B are defined as follows:

$$A(x) = 0.7, \ A(y) = 0.3; \ B(x) = 0.3, \ B(y) = 0.7$$

Then we get that (L^X, δ) is a Kubiak- T_2 space. In fact, taking U = A, V = B, we get that $U(x) \not\leq U(y) V(y) \not\leq V(x)$ and $U \leq V'$. It is easy to check that (L^X, δ) is not a sub- T_2 space. For $\forall \lambda \in M(L)$, we get that $\eta^-(x_\lambda), \eta^-(y_\lambda) \subseteq \{\perp_X, A, B, 0.3^*, 0.7^*\}$. Therefore for $\forall P \in \eta^-(x_\lambda), \forall Q \in \eta^-(y_\lambda)$, we have $P \lor Q \leq 0.7^*$. Hence (L^X, δ) is not a sub- T_2 space. \Box

Now, we discuss the relation between the sub-separation axioms and other separation axioms presented by Shi[14], Wang[16], Gu and Zhao[4]. The following two examples show that sub- T_2 need not imply L- T_2 and L- T_2 also need not imply sub- T_2 .

Example 4.12. Let L=[0,1] and $X = \{x, y\}$. Take $\delta = \{\perp_X, \top_X, C_1, C_2, C_1 \lor C_2\}$, where C_i is defined as follows:

$$C_1(x) = 0.5, C_1(y) = 0; C_2(x) = 0, C_2(y) = 0.5.$$

Easily we get that (L^X, δ) is a sub- T_2 space. In fact, taking $\lambda = \frac{2}{3}, P = C'_1$ and $Q = C'_2$, we get that $P \in \eta^-(x_\lambda), Q \in \eta^-(y_\lambda)$ and $P \lor Q = \top_X$. It is easy to check that (L^X, δ) is not L- T_2 . \Box

Example 4.13. Let L, X and δ be defined as in Example 4.11. From Example 4.11, we know that (L^X, δ) is not a sub- T_2 space. Next we prove that (L^X, δ) is L- T_2 . Take Q = A, P = B', then $Q \in \delta, P \in \delta', Q \leq P$ and $Q(x) \leq P(y)$. \Box

Lemma 4.14 (Wang [16]). If (L^X, δ) is N-compact and T_2 , then it is T_4 . \Box

Obviously, we have the following result.

Theorem 4.15. If (L^X, δ) is N-compact and T_2 , then it is sub- T_i , where $i = 1, 2, 2\frac{1}{2}, 3, 4$. \Box

Lemma 4.16 (Gu and Zhao [4]). Let (L^X, δ) be an *L*-ts. Then,

(1) (L^X, δ) is Layer T_0 iff for any $x_\lambda, y_\lambda \in M(L^X)$ with $x \neq y$, there exists $P \in \delta'$ such that $x_\lambda \not\leq P$ and $y_\lambda \leq P$ or $x_\lambda \leq P$ and $y_\lambda \not\leq P$.

(2) (L^X, δ) is Layer T_1 iff for any $x_\lambda, y_\lambda \in M(L^X)$ with $x \neq y$, there exists $P \in \delta'$ such that $x_\lambda \not\leq P$ and $y_\lambda \leq P$.

(3) (L^X, δ) is Layer T_2 iff for any $x_\lambda, y_\lambda \in M(L^X)$ with $x \neq y$, there exist $P, Q \in \delta'$ such that $P \in \eta^-(x_\lambda)$, $Q \in \eta^-(y_\lambda)$ and $P \lor Q \ge [\lambda]$. \Box

By Lemma 4.16, we have the following conclusion.

Theorem 4.17. Let (L^X, δ) be an *L*-ts. If (L^X, δ) is a layer T_i space, then it is a sub- T_i space, where $i = 0, 1.\Box$

Lemma 4.18 (Gu and Zhao [4]). Let (L^X, δ) be an *L*-ts. If (L^X, δ) is a T_i space, then it is a layer T_i space, where $i = 0, 1, 2.\Box$

Therefore, by Theorem 4.17, Lemmas 4.18, 4.16 (3), the following results hold.

Corollary 4.19. (1) $T_i \Rightarrow \text{layer } T_i \Rightarrow \text{sub-} T_i$, where i = 0, 1. (2) layer $T_2 \Rightarrow \text{sub-} T_2$ whenever the largest element \top is a molecule. \Box

In the following, we give an example showing that a sub- T_2 space need not be a layer T_2 space, to say nothing of being T_2 .

Example 4.20. Let L, X and δ be defined as in Example 4.12. From Example 4.12, we know that (L^X, δ) is a sub- T_2 space. But (L^X, δ) is not a layer T_2 space. In fact, taking $\alpha = \frac{1}{3}$, then we get that $(X, (\tau_{\alpha}(\delta'))') = \{\emptyset, X\}$. Clearly, $(X, (\tau_{\alpha}(\delta'))')$ is not a T_2 space. From Definition 1.5, we know that (L^X, δ) is not a layer T_2 space. It is easy to prove that (L^X, δ) is not a T_2 space. \Box

From all of examples above, we find that, in general, all sub-separation axioms in this paper are weaker than other separation axioms that had appeared in literature. Indeed, there are many *L*-topological spaces which satisfy sub-separation axioms, but doesn't fulfill other separation axioms. This is one of differences between sub-separation axioms and other separation axioms. For examples, there are good work on separation axioms of *L*-topological spaces in [2], [3], [5] and [8]. In the following, we will offer more examples to show that our sub-separation axioms is very different from separation axioms established in these papers. For simplicity, we only consider $T_{2\frac{1}{2}}$ and T_2 separation axiom therein. Recall the definition of WT_2 in [3] as follows.

Definition 4.21. An *L*-ts (L^X, δ) is called a *WT*₂-space if for any $x_\lambda, y_\mu \in M(L^X)$ with $x \neq y$, there are $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(y_\mu)$ such that $P \lor Q \ge (\lambda \lor \mu)^*$. \Box

Remarks 4.22. (1) For an *L*-ts (L^X, δ) , it is easy to check its $T_{2\frac{1}{2}}$ [2] (seeing Definition 1.2 introduced in the paper) means sub- $T_{2\frac{1}{2}}$, but Example 4.23 below shows that the converse needn't be true.

(2) For an L-ts (L^X, δ) , it is easy to check its WT_2 implies sub- T_2 whenever the largest element \top is a molecule, and Example 4.23 below proves that the converse needn't be true. \Box

Example 4.23. Let *L* be the completely distributive De Morgan algebra having four elements: \bot , *a*, *b*, \top satisfying $a \lor b = \top$, $a \land b = \bot$, a' = b, and $X = \{x, y\} (x \neq y)$. Take $\delta' = \{\bot_X, \top_X, x_a \lor y_b, x_b \lor y_a\}$. We will show the following conclusions.

(i) The L-ts (L^X, δ) is sub- T_2 . In fact, now $M(L) = \{a, b\}$. For $x, y \in X$ with $x \neq y$, there is $\lambda = a$, and also $P = x_b \lor y_a \in \eta^-(x_\lambda), Q = x_a \lor y_b \in \eta^-(y_\lambda)$ such that $P \lor Q = \top_X$. Thus (L^X, δ) is sub- T_2 , as desired.

(*ii*) The L-ts (L^X, δ) is sub- T_0 and also sub- T_1 . These can be obtained by (*i*) and Theorems 4.1(1), 4.2.

(*iii*) The L-ts (L^X, δ) isn't WT_2 in the sense of [3]. Letting $x_a, y_b \in M(L^X)$, it is easy to check $\eta^-(x_a) = \{ \perp_X, x_b \lor y_a \}$ and $\eta^-(y_b) = \{ \perp_X, x_b \lor y_a \}$. Hence for any $P \in \eta^-(x_a)$ and $Q \in \eta^-(y_b)$, it cannot be true that

$$P \lor Q \ge (a \lor b)^* = \top_X,$$

where $(a \vee b)^*$ is the constant *L*-set with its value $(a \vee b)$ in the sense of [3]. In fact, for any $P \in \eta^-(x_a)$ and $Q \in \eta^-(y_b)$, $P \vee Q \leq x_b \vee y_a$, but $x_b \vee y_a \leq \top_X$ and $x_b \vee y_a \neq \top_X$. By Definition 4.21 of WT_2 , the *L*-ts (L^X, δ) isn't WT_2 .

(*iv*) The L-ts (L^X, δ) is sub- $T_{2\frac{1}{2}}$. Let $P = x_b \vee y_a$ and $Q = x_a \vee y_b$. It is observed that both P and Q are open since P' = Q and Q' = P. For the unique pair of x and y with $x \neq y$, putting $\lambda = a \in M(L)$, there are $P \in \eta^-(x_\lambda)$ and $Q \in \eta^-(y_\lambda)$ such that

$$P^{\circ} \lor Q^{\circ} = P \lor Q = \top_X.$$

Thus, (L^X, δ) is sub- $T_{2\frac{1}{2}}$ by Definition 2.1 (3).

(v) The (L^X, δ) isn't $T_{2\frac{1}{2}}$ in the sense of [2] (see Definition 1.2 also).

Indeed, $\eta^{-}(x_{a}) = \{x_{b} \lor y_{a}\}$ and $\eta^{-}(y_{b}) = \{x_{b} \lor y_{a}\}$. We find that there are two points $x_{a}, y_{b} \in M(L^{X})$ with $x \neq y$ such that for any $P \in$ $\eta^{-}(x_{a}) = \{x_{b} \lor y_{a}\}$ and $Q \in \eta^{-}(y_{b}) = \{x_{b} \lor y_{a}\}$ (it must be $P = x_{b} \lor y_{a}$ and $Q = x_{b} \lor y_{a}$)

$$P^{\circ} \lor Q^{\circ} = P \lor Q = x_b \lor y_a \neq \top_X.$$

It implies that (L^X, δ) isn't $T_{2\frac{1}{2}}$ by Definition 1.2, as desired. \Box

In [15], Shi and Chen redefined Urysohn in L-topology, where it was called Shi-Urysohn. Now we consider the relation between the Shi-Urysohn axiom and our sub- $T_{2\frac{1}{2}}$ axiom. Recall the definition of Shi-Urysohn axiom in [15] as follows.

Definition 4.24. (Shi and Chen [15]).

An L-ts (L^X, δ) is said to be Urysohn if any $x_\lambda, y_\mu \in M(L^X)$ with $x_\lambda \not\leq y_\mu$, there exist $P \in \eta^-(x_\lambda)$ and $Q \in \aleph^\circ(y_\mu)$ such that $P^\circ \geq Q^-$, where $\aleph^\circ(y_\mu) = \{V : y_\mu \leq V, V \in \delta\}$. \Box

The following example shows that our ${\rm sub-}T_{2\frac{1}{2}}$ need not imply Shi-Urysohn.

Example 4.25. Let X = L = [0, 1], and $\delta = \{\chi_E : E \subset X\}$, where χ_E is the characteristic function of E. Then δ is a [0,1]-topology on X. It is easy to check that (L^X, δ) is $T_{2\frac{1}{2}}(\text{Urysohn})$, then it is sub- $T_{2\frac{1}{2}}$. But it is not Shi-Urysohn . In fact, for any $x \in X$ and any $P \in \eta^-(x_{\top})$, it follows that $P^{\circ}(x) = \bot$. But there is no $Q \in \aleph^{\circ}(x_{0.5})$ such that $P^{\circ} \geq Q^{-}$. \Box

Remark 4.26. Does the Shi-Urysohn axiom imply our sub- $T_{2\frac{1}{2}}$? We can't solve it. So we leave it as an open problem. \Box

To discuss the relation between sub- T_2 separation axiom and other T_2 separation axiom introduced in [5] and [8]. Note that we consider the case of L = I = [0, 1], the unit interval, so that the conclusions is available for the membership valued lattice using in the published papers [6] and [9]. We introduce some definitions for the convenience of readers.

Definition 4.27. (Liu and Luo[11]). Let $x_{\lambda} \in M(I^X)$ and $A, B \in I^X$. We say x_{λ} quasi-coincides with A, or say x_{λ} is quasi-coincident with A, denoted

by $x_{\lambda}qA$, if $A(x) + \lambda > \top$; say A quasi-coincides with B at $x \in X$, or say A is quasi-coincident with B at x, AqB at x for short, if $A(x) + B(x) > \top$; say A quasi-coincides with B, or say A is quasi-coincident with B, denoted by AqB, if A quasi-coincides with B at some point $x \in X$. Relation "does not quasi-coincides with" or "is not quasi-coincident with" is denoted by \overline{q} . \Box

Definitio 4.28. (Liu [9]). Let (I^X, δ) be *I*-ts and $x_{\lambda} \in M(I^X)$. A fuzzy set *U* is called a quasi-coincident neighborhood (q-nbd, for short) of x_{λ} if there exists $V \in \delta$ such that $x_{\lambda}qV$ and $V \leq U$. \Box

Definition 4.29. (C.K. Wong [16]). Let (I^X, δ) be an *I*-ts, $A \in I^X$ and $x_\lambda \in M(I^X)$.

A is said to be a neighborhood (nbd, in short) in (X, δ) iff there is a $B \in \delta$ such that $x_{\lambda} \leq B \leq A$. Therefore, an open set $U \in \delta$ is the nbd of each of its points. \Box

Definition 4.30. (S. Ganguly and S. Saha [5]). An *I*-ts (I^X, δ) is $GS-T_2$ (Originally, T_2) iff for any two distinct points x_{λ} and y_{μ} :

Case I. When $x \neq y$, x_{λ} and y_{μ} have open nbds which are not quasicoincident.

Case II. When x = y and $\lambda < \mu$, then y_{μ} has an open q-nbd V and x_{λ} has an open nbd U such that $V\overline{q}U$. \Box

Definition 4.31. (A. Kandil and M.E. El-Shafee [8]). An *I*-ts (I^X, δ) is FT_2 if $\forall x_{\lambda}, y_{\mu} \in M(I^X)$ with $x_{\lambda} \overline{q} y_{\mu}$, there exist $Q_{x_{\lambda}} \in \delta$ and $Q_{y_{\mu}} \in \delta$ such that

$$\lambda \leq Q_{x_{\lambda}}(x), \ \mu \leq Q_{y_{\mu}}(y) \ \text{and} \ Q_{x_{\lambda}}\overline{q}Q_{y_{\mu}}.$$

Remark 4.32. The following Example 4.33 shows that our sub- T_2 needn't be GS- T_2 in the sense of Definition 4.30. \Box

Example 4.33. Let (I^X, δ) be the *I*-ts defined in Example 4.12. We have showed that (I^X, δ) is a sub- T_2 space in Example 4.12. Now we assert that (I^X, δ) isn't GS- T_2 in the sense of Definition 4.30. Taking $\lambda = \frac{1}{8}$ and $\mu = \frac{1}{4}$, then x_{λ} and x_{μ} are different points with $\lambda < \mu$. Moreover, \top_X is the unique open Q-neighborhood of x_{μ} and the set of open neighborhood of x_{λ} is $A = \{C_1, C_1 \lor C_2, \top_X\}$. Obviously, for each $V \in A$, we cannot have $V\overline{q}\top_X$. Thus, (I^X, δ) isn't GS- T_2 in the sense of Definition 4.30. \Box **Remark 4.34.** The following Example 4.35 shows that our sub- T_2 needn't be FT_2 in the sense of Definition 4.31. \Box

Example 4.35. Let (I^X, δ) be the *I*-ts defined in Example 4.12. We have showed that (I^X, δ) is a sub- T_2 space in Example 4.12. Now we assert that (I^X, δ) isn't FT_2 . For the $x, y \in X$ with $x \neq y$, taking $\lambda = \frac{1}{3}$, then $x_\lambda \overline{q} y_\lambda$. The unique neighborhood of x_λ and y_λ is \top_X , moreover $\top_X \overline{q} \top_X$ never is true. Hence (I^X, δ) isn't FT_2 . \Box

References

- C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24, pp. 182–190, (1968).
- [2] S. L. Chen, G. W. Meng, U-separation axioms and characterizations in *L*-fuzzy topological spaces, J. Liaochen. Sci. Technol. Univ., 11(1), pp. 1–6, (1998).
- [3] J.X. Fang, B. Ren, A set of new separation axioms in *L*-fuzzy topological spaces, Fuzzy sets and systems, 96, pp. 359–366, (1998).
- [4] M. Gu, B. Zhao, Layer separation axioms in L-fuzzy topological spaces, Fuzzy Systems and Mathematics, 17, pp. 12–18 (in Chinese), (2003).
- [5] S. Ganguly and S. Saha, On separation axioms and T_i -fuzzy continuity, Fuzzy Sets and Systems, 16, pp. 265–275, (1985).
- [6] B. Hutton, Normality in fuzzy topoligical spaces, J. Math. Anal. Appl., 50, pp. 74–79, (1975).
- [7] T. Kubiak, On L-Tychonoff spaces, Fuzzy Sets and Systems, 73, pp. 25–53, (1995).
- [8] A. Kandil, M.E. El-Shafee, Regularity axioms in fuzzy topological spaces and *FR_i*-proximities, Fuzzy Sets and Systems, 27, pp. 217–231, (1988).
- [9] Y. Liu, Pointwise characterizations of complete regularity and embeding thorem in fuzzy topological space, Sci. Sinica. Ser. A 26, pp. 138–147, (1983).

- [10] Y. Liu, M. Luo, Separation in latticed induced spaces, Fuzzy Sets and Systems, 36, pp. 55–66, (1990).
- [11] Y. Liu, M. Luo, Fuzzy topology, World Scienctific Publishing, Singapore, (1997).
- [12] R. Lowen, Fuzzy topological spaces and compactness, J. Math. Anal. Appl., 56, pp. 621–633, (1976).
- [13] S. E. Rodabaugh, Categorical frameworks for stone representation theorems, in: S. E. Rodabaugh, et al., (Eds.), Applications of category theory to Fuzzy Subsets, Kluwer Academic Publishers, Netherlands, pp. 177–231, (1992).
- [14] F. G. Shi, A new approach to *L-T*₂, *L*-Urysohn, and *L*-completely Hausdorff axioms, Fuzzy Sets and Systems, 157, pp. 794–803, (2006).
- [15] F. G. Shi and P. Chen, The Urysohn axiom and the completely Hausdorff axiom in L-topological spaces, Iranian Journal of Fuzzy Systems, Vol. 7, No. 1, pp. 33-45, (2010).
- [16] G. Wang, Theory of L-fuzzy topolgical spaces, Sha'anxi Normal University Xi'an, (1988) (in Chinese).
- [17] C. K. Wong, Fuzzy point and local properties of fuzzy topology, J. Math. Anal. Appl., 46, pp. 316–328, (1974).
- [18] P. Wuyts, R. Lowen, On local and global measures of separation in fuzzy topological spaces, Fuzzy Sets and Systems, 19, pp. 51–80, (1986).
- [19] F. You, The separation axioms of $T_2\frac{1}{2}$ *L*-fts and $ST_2\frac{1}{2}$ *L*-fts, Fuzzy Systems and Mathematics, 15, pp. 73–76 (in Chinese), (2001).

Cui-Mei Jiang Qingdao Technological University 11 Fushun Road Qingdao 266033 P. R. China China e-mail : jiangcuimei2004@163.com

and

Jin-Ming Fang Department of Mathematics Ocean University of China China e-mail :