
Some separation axioms in L-topological spaces

CUI-MEI JIANG
QINGDAO TECHNOLOGICAL UNIVERSITY, CHINA

and

JIN-MING FANG

OCEAN UNIVERSITY OF CHINA, CHINA
Received : December 2011. Accepted : January 2012

Proyecciones Journal of Mathematics
Vol. 31, No 2, pp. 125-147, June 2012.
Universidad Católica del Norte
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Abstract

In this paper, under the idea of L-T0 or sub-T0, we propose a set of
new separation axioms in L-topological spaces, namely sub-separation
axioms. And some of their properties are studied. In addition, the
relation between the sub-separation axioms defined in the paper and
other separation axioms is discussed. The results show that the sub-
separation axioms in this paper are weaker than other separation ax-
ioms that had appeared in literature.
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1. Introduction and preliminaries

Since Chang [1] introduced fuzzy theory into topology, Wong, Lowen,
Hutton etc., discussed respectively various aspects of fuzzy topology (Wong
[17], Lowen [12], Hutton [6]).

Separation is an essential part of fuzzy topology, on which a lot of work
have been done [2—19]. In 1983, Liu [9] introduced the sub-T0 axiom, for
underlying lattice L being a completely distributive DeMorgan algebra, in
terms of closed sets and proved that the fuzzy real line and the fuzzy unit
interval satisfy this axiom. Wuyts and Lowen [18] and Rodabaugh [13]
independently gave a more general L-T0 axioms, the latter for L being a
complete lattice, using only open sets and equivalent to the sub-T0 when
L is a completely distributive DeMorgan algebra. The aim of this paper is
to study some separation axioms on the basis of the thought of the sub-T0
and the layer of L-topology.

Now we recall some the concepts required in the sequel.

Throughout this paper, (L,
W
,
V
,0 ) is a completely distributive DeMor-

gan algebra, i.e., a complete and completely distributive lattice with an
order-reversing involution ( )

0
, and with the smallest element ⊥ and the

largest element > (⊥ 6= >). Obviously, for every nonempty set X, LX , the
family of all L-sets, i.e., all mappings from X to L, is also a complete and
completely distributive lattice under the pointwise order. we denote the
smallest element and the largest element of LX by ⊥X and >X , respec-
tively. For any A ∈ LX , the set {x : A(x) 6= ⊥} is called the support of A
and denoted by suppA, i.e., suppA = {x : A(x) 6= ⊥}

An L-topological space, briefly L-ts, is a pair (LX , δ), where δ, called an
L-topology on LX , a subfamily of LX closed under the operation of finite
intersections and arbitrary unions, and δ

0
= {A0

: A ∈ δ}; the member
of δ (resp. δ

0
) is called open (resp., closed) L-sets, and for each B ∈ LX ,

the L-set B◦ =
W{U ∈ δ : U ≤ B} (resp. B− =

V{C ∈ δ
0
: B ≤ C})

is called the interior (resp., closure) of B. An element λ ∈ L is called a
molecule if λ 6= ⊥ and λ ≤ a ∨ b implies λ ≤ a or λ ≤ b. The set of
all molecules of L (resp., LX) will be denoted by M(L) (resp., M(LX));
obviously, M(LX) = {xλ : x ∈ X,λ ∈ M(L)}. For any xλ ∈ M(LX), a
closed L-set P ∈ δ

0
is called a closed remote neighborhood of xλ if xλ 6≤ P .

The set of all closed remote neighborhood of xλ is denoted by η
−(xλ). For

any A ∈ LX , a closed L-set P ∈ δ
0
is called a closed remote neighborhood

of A if for any x ∈ suppA such that A(x) 6≤ P (x). The set of all closed
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remote neighborhood of A is denoted by η−(A). For any A ∈ LX , A is a
called pseudo-crisp closed set if ∃ a ∈ L− {⊥} such that A(x) > ⊥ if and
only if ∀x ∈ X,A(x) ≥ a.

Let f : X −→ Y be an ordinary mapping. Based on f : X −→ Y define
an mapping f→ : LX −→ LY which is called a function of Zadeh’s type
and its right adjoint mapping f← : LY −→ LX by

∀A ∈ LX , ∀y ∈ Y, f→(A)(y) =
_
{A(x) : x ∈ X, f(x) = y}, and

∀B ∈ LY , ∀x ∈ X, f←(B)(x) = B(f(x)), respectively.

For other undefined notions and symbols in this paper, please refer to
Wang [16].

Definition 1.1 (Liu [9]). An L-ts (LX , δ) is called a sub-T0 space if for
any x, y ∈ X with x 6= y, there exists λ ∈M(L), either there is P ∈ η−(xλ)
such that yλ ≤ P or there is Q ∈ η−(yλ) such that xλ ≤ Q.

Definition 1.2 (Chen and Meng [2]). An L-ts (LX , δ) is called a T2 1
2

or L-Urysohn space if for any xλ, yµ ∈ M(LX) with x 6= y, there exist
P ∈ η−(xλ) and Q ∈ η−(yµ) such that P ◦ ∨Q◦ = >X .

Definition 1.3 (Wang [16]). Let (LX , δ) be an L-ts. Then,
(1) (LX , δ) is said to be T1 if for any xλ, yµ ∈M(LX) with xλ 6≤ yµ, there
exists P ∈ η−(xλ) such that yµ ≤ P .
(2) (LX , δ) is said to be T2 (or Hausdorff) if for any xλ, yµ ∈M(LX) with

xλ 6≤ yµ, there exist P ∈ η−(xλ) and Q ∈ η−(yµ) such that P ∨Q = >X .
(3) (LX , δ) is said to be regular if for each xλ ∈M(LX) and each nonempty
pseudo-crisp closed set A with x 6∈ suppA, there exist P ∈ η−(xλ) and
Q ∈ η−(A) such that P ∨Q = >X . (L

X , δ) is said to be T3 if it is regular
and T1.
(4) (LX , δ) is said to be normal if for each pair of nonempty pseudo-crisp

closed set A and B with suppA ∩ suppB = Ø, there exist P ∈ η−(A) and
Q ∈ η−(B) such that P ∨Q = >X . (L

X , δ) is said to be T4 if it is normal
and T1.

Theorem 1.4 (Wang [16], You [19]). Ti(i = 1, 2, 2
1
2 , 3, 4) is L-good exten-

sion in Lowen’s sense.

Definition 1.5 (Gu and Zhao [4]). An L-ts (LX , δ) is said to be layer
T0 if for any α ∈ M(L), (X, (τα(δ

0
))
0
) is T0, where τα(δ) = {τα(A) : A ∈
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δ0}, τα(A) = {x ∈ X : A(x) ≥ α}. In the same way, layer Ti(i = 1, 2, 3, 4)
and layer regular (completely regular, normal) are defined.

Definition 1.6 (Kubiak [7]). An L-ts (LX , δ) is said to be

(i) Kubiak-T1 (or L-T1) if for all x, y ∈ X with x 6= y, there exist
U, V ∈ δ such that U(x) 6≤ U(y) and V (y) 6≤ V (x).

(ii) Kubiak-T2 if for all x, y ∈ X with x 6= y, there exist U, V ∈ δ such
that U(x) 6≤ U(y) , V (y) 6≤ V (x) and U ≤ V

0
.

Lemma 1.7 (Liu and Luo [10]). Let (LX , δ) be an L-ts, where δ is
generated by a classical topology, then for any A ∈ LX such that A◦ =W{αχ[τα(A)]◦ : α ∈M(L)}.

Definition 1.8 (Shi [14]). An L-ts (LX , δ) is called L-T2 if for all x, y ∈ X
with x 6= y, there exist P ∈ δ

0
andQ ∈ δ such thatQ ≤ P andQ(x) 6≤ P (y).

2. Definitions and characterizations

In this section, we introduce the concept of sub-T1, sub-T2, sub-T2 1
2
,

sub-T3 and sub-T4 separation axioms in L- topological spaces and establish
the characteristic theorems of these sub-separation axioms. First, some
definitions are given as follows:

Definition 2.1. Suppose that (LX , δ) is an L-ts. Then,
(1) (LX , δ) is said to be sub-T1 if for any x, y ∈ X with x 6= y, there
exists λ ∈ M(L), both there is P ∈ η−(xλ) such that yλ ≤ P and there is
Q ∈ η−(yλ) such that xλ ≤ Q .
(2) (LX , δ) is said to be sub-T2 if for any x, y ∈ X with x 6= y, there
exists λ ∈ M(L), and there are P ∈ η−(xλ) and Q ∈ η−(yλ) such that
P ∨Q = >X .
(3) (LX , δ) is said to be sub-T2 1

2
if for any x, y ∈ X with x 6= y, there

exists λ ∈ M(L), and there are P ∈ η−(xλ) and Q ∈ η−(yλ) such that
P ◦ ∨Q◦ = >X .
(4) (LX , δ) is said to be sub-regular if for each x ∈ X and each nonempty
pseudo-crisp closed set A with x 6∈ suppA, there exists λ ∈ M(L), and
there are P ∈ η−(xλ) and Q ∈ η−(λA) such that P ∨Q = >X . (L

X , δ) is
said to be sub-T3 if it is sub-regular and sub-T1.
(5) (LX , δ) is said to be sub-normal if for each pair of nonempty pseudo-
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crisp closed set A and B with suppA∩ suppB = Ø, there exists λ ∈M(L),
and there are P ∈ η−(λA) and Q ∈ η−(λB) such that P ∨Q = >X , where
λA(x) = λ ∧ A(x) for any x ∈ X. (LX , δ) is said to be sub-T4 if it is
sub-normal and sub-T1.

By Definition 2.1, we have:

Corollary 2.2. The following implications hold: Ti =⇒ sub-Ti, where i=
1, 2, 212 ,3,4.

Now we introduce the convergence of molecular nets. Let (LX , δ) be
an L-ts, S = {S(n) : n ∈ D} a molecular net and e ∈ M(LX) , e is said
to be a limit point of S, (or S converges to e ; in symbols, S → e), if for
∀P ∈ η−(e), S(n) 6≤ P is eventually true, that is there exists m ∈ D such
that S(n) 6≤ P for all n ∈ D with n ≥ m. The following results show that
the convergence of molecular nets is unique under a certain condition for
the sub-T2 space.

Theorem 2.3. Let (LX , δ) be a sub-T2 space, then for each molecular net
S such that |KS| ≤ 1, where KS = {x ∈ X : limS(x) = >}.

Proof. Let (LX , δ) be a sub-T2 space and S = {S(n) : n ∈ D} be a molecu-
lar net. Assume that |KS | ≥ 2, for any x, y ∈ KS with x 6= y, since (LX , δ)
is sub-T2, there exists λ ∈M(L), and there are P ∈ η−(xλ) and Q ∈ η−(yλ)
such that P ∨Q = >X . Then we have S → xλ and S → yλ from xλ ≤ limS
and yλ ≤ limS by Theorem 2.3.4 (Wang [16]). So there exists an n1 ∈ D
such that S(n) 6≤ P for all n ∈ D with n ≥ n1 and there exists an n2 ∈ D
such that S(n) 6≤ Q for all n ∈ D with n ≥ n2. Taking n3 ∈ D such that
n3 ≥ n1 and n3 ≥ n2, hence we have S(n) 6≤ P ∨Q when n ≥ n3.This
implies that we must have P ∨Q 6= >X . This is a contradiction. 2

If > is a molecule, the inverse of Theorem 2.3 is also true.

Theorem 2.4. (LX , δ) is an L-ts, if for each molecular net S with |KS| ≤ 1,
where KS = {x ∈ X : limS(x) = >}, then (LX , δ) is a sub-T2 space.

Proof. Suppose that (LX , δ) is not a sub-T2 space, then there exist x, y ∈ X
satisfying x 6= y, ∀λ ∈ M(L),∀P ∈ η−(xλ) and ∀Q ∈ η−(yλ) such that
P ∨Q 6= >X . Let D(λ) = η−(xλ)× η−(yλ) and D(λ) be a directed set by
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product order. For each m = (P,Q) ∈ D(λ), we can take a molecule Sλ(m)
such that Sλ(m) 6≤ P ∨Q. Let Sλ = {Sλ(m) : m ∈ D(λ)}, hence it is easy
to prove Sλ → xλ and Sλ → yλ . Therefore, limSλ ≥ xλ ∨ yλ. Since > is
a molecule, the standard minimal set β∗(>) is a directed set(Wang [16]).
We denote β∗(>) by E, i.e., E = β∗(>). Noticing that {xλ}λ∈E, {yλ}λ∈E
are molecular nets and {xλ}λ∈E → x>, {yλ}λ∈E → y>, we can make a
molecular net S̄ : E × Q

λ∈E
D(λ) −→M(LX) such that

S̄(λ, f) = Sλ(f(λ)) , ∀(λ, f) ∈ E ×
Y
λ∈E

D(λ).

Then, S̄ → x>, S̄ → y>. In fact, for every P ∈ η−(x>), since
{xλ}λ∈E → x>, there exists a λ0 ∈ E such that xλ 6≤ P for all λ ∈ E with
λ ≥ λ0. It follows from Sλ → xλ for λ ∈ E that there exists mλ ∈ D(λ)
s.t. Sλ(m) 6≤ P for all m ∈ D(λ) with m ≥ mλ. We define f0 ∈

Q
λ∈E

D(λ)

as follows:

f0(λ) =

(
mλ, λ ≤ λ0.
any fixed element in D(λ), λ 6≤ λ0.

Then we can prove for every pair (λ, f) ∈ E × Q
λ∈E

D(λ) with (λ, f) ≥

(λ0, f0) such that S̄(λ, f) 6≤ P , i.e., S̄ is not in any closed remote neighbor-
hood P of x> eventually. So we have S̄ → x> . Similarly, we can prove
S̄ → y>. Therefore, |KS̄ | ≥ 2. This contradicts to |KS̄ | ≤ 1. Thus, we
conclude that (LX , δ) is a sub-T2 space. 2

With Theorem 2.3 and Theorem 2.4, we have:

Corollary 2.5. Let > be a molecule, then (LX , δ) is a sub-T2 space iff for
each molecular net S such that |KS | ≤ 1, where KS = {x ∈ X : limS(x) =
>}.

For the sub-T2 space, we have the following theorem:

Theorem 2.6. Let (LX , δ) be a sub-T2 space and > be a molecule,
then super F-compactness, N-compactness, strongly F-compactness and
F-compactness are equivalent.
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Proof. The proof is similar to that of Wang’s Theorem 6.4.29 in [16].

Theorem 2.7. Suppose that (LX , δ) is a weakly induced L-ts. If it is a
sub-T2 space, then (X, [δ]) is a T2 space.

Proof. Let (LX , δ) be a sub-T2 space and x, y ∈ X with x 6= y. Then
there exists λ ∈ M(L), and there are P ∈ η−(xλ) and Q ∈ η−(yλ) such
that P ∨Q = >X . We put

U = {t ∈ X : P
0
(t) 6≤ λ

0} = {t ∈ X : P (t) 6≥ λ}, and

V = {t ∈ X : Q
0
(t) 6≤ λ

0} = {t ∈ X : Q(t) 6≥ λ}.

Then it is easy to know that χU , χV ∈ δ i.e., U, V ∈ [δ]. Obviously
x ∈ U, y ∈ V . Thus it remains only to show that U

T
V = Ø. In fact, if

there were a z ∈ U
T
V , then we have λ 6≤ P (z) and λ 6≤ Q(z). Hence,

λ 6≤ (P ∨Q)(z), which contradicts to P ∨Q = >X . Therefore, (X, [δ]) is a
T2 space.

3. Properties

In this section,we will investigate some nice properties of sub-separation
axioms. At first, we show that sub-separation axioms are good extensions
in the sense of Lowen.

Theorem 3.1. Let (X, T ) be a crisp topological space. Then (LX , ωL(T ))
is a sub-Ti space iff (X, T ) is a Ti space, where i= 1, 2, 212 , 3, 4.

Proof. Sufficiency. Let (X, T ) be a Ti space (i=1, 2, 2
1
2 , 3, 4). Then

(LX , ωL(T )) is a Ti space by Theorem 1.4. Thus from Corollary 2.2, we
know that (LX , ωL(T )) is a sub-Ti space.

Necessity. Case i=1: Let (LX , ωL(T )) be a sub-T1 space. For any x ∈ X
and taking y ∈ X with x 6= y, since (LX , ωL(T )) is a sub-T1 space, there
exists λ ∈ M(L), both there is P ∈ η−(yλ) such that xλ ≤ P and there is
Q ∈ η−(xλ) such that yλ ≤ Q. We put

U = {z ∈ X : P
0
(z) 6≤ λ

0}.

It is clear that U ∈ T , x 6∈ U and y ∈ U . Hence y 6∈ {x}−, where {x}− is
the closure of {x}. Therefore, (X, T ) is a T1 space.
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Case i= 2: For any two distinct points x, y ∈ X with x 6= y, since
(LX , ωL(T )) is a sub-T2 space, there exists λ ∈ M(L), and there are P ∈
η−(xλ) and Q ∈ η−(yλ) such that P ∨Q = >X . We put

U = {z ∈ X : P
0
(z) 6≤ λ

0}, V = {z ∈ X : Q
0
(z) 6≤ λ

0}.

Noticing that P
0
, Q

0 ∈ ωL(T ) and xλ 6≤ P , yλ 6≤ Q, hence U,V ∈ T and
x ∈ U , y ∈ V . Thus it remains only to show that U ∩ V = Ø. In fact, if
there were a z ∈ U ∩ V 6= Ø, then we have λ 6≤ P (z) and λ 6≤ Q(z). Hence
λ 6≤ (P ∨Q)(z) = >, which contradicts to λ ≤ >. Therefore, (X, T ) is a
T2 space.

Case i= 212 : For any x, y ∈ X with x 6= y, since (LX , ωL(T )) is a
sub-T2

1
2 space, there exists λ ∈ M(L), and there are P ∈ η−(xλ) and

Q ∈ η−(yλ) such that P ◦∨Q◦ = >X . Clearly, P ∨Q = >X . From λ 6≤ P (x)
and λ 6≤ Q(y), we know that there exist λP ∈ β∗(λ) and λQ ∈ β∗(λ) such
that λP 6≤ P (x) and λQ 6≤ Q(y). Since λ is a molecule, the standard
minimal set β∗(λ) is a directed set (Wang [16]). Taking γ ∈ β∗(λ) such
that γ ≥ λP ∨ λQ. We put

E = τγ(P ) = {z : P (z) ≥ γ}, F = τγ(Q) = {z : Q(z) ≥ γ}.

It is clear that E,F ∈ T 0
, x 6∈ E, y 6∈ F and E ∪F = X. In order to prove

that (X, T ) is a T2
1
2 space, we need only to verify E◦ ∪ F ◦ = X by the

definition of T2
1
2 . For this purpose, we firstly prove that τλ(P

◦) ⊆ [τγ(P )]◦
and τλ(Q

◦) ⊆ [τγ(Q)]◦. In fact, taking z ∈ τλ(P
◦), from Lemma 1.7, we

have _
α∈M(L)

αχ[τα(P )]◦(z) = P ◦(z) ≥ λ .

Therefore, there exists α ∈ M(L) such that z ∈ [τα(P )]◦ and α ≥ γ. i.e.,
z ∈ [τα(P )]◦ ⊆ [τγ(P )]

◦. Hence, we obtain that τλ(P ◦) ⊆ [τγ(P )]
◦ from

the arbitrariness of z. Similarly, we can get τλ(Q
◦) ⊆ [τγ(Q)]◦, as desired.

Naturally, we have

E◦ ∪ F ◦ = [τγ(P )]◦ ∪ [τγ(Q)]
◦ ⊇ τλ(P

◦) ∪ τλ(Q◦) = τλ(P
◦ ∨Q◦) = X,

i.e., (X, T ) is a T2 1
2
space.

Case i= 3: Since sub-T1 separation axiom is an L-good extension, we
prove this theorem only for the sub-regular case.

For any x ∈ X, suppose that E ∈ T 0
with x 6∈ E. Clearly, χE is a

nonempty pseudo-crisp closed set in (LX , ωL(T )) and x 6∈ supp(χE). Since
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(LX , ωL(T ) is a sub-regular space, there exists λ ∈ M(L), and there are
P ∈ η−(xλ) and Q ∈ η−(λχE) such that P ∨Q = >X .

Let

U = {z : P 0
(z) 6≤ λ

0}, V = {z : Q0
(z) 6≤ λ

0}.

It is easy to verify that x ∈ U, E ⊆ V and U ∩ V = Ø (U, V ∈ T ).
Therefore, (X, T ) is a regular space.

Case i= 4: the proof is similar to that of the case i= 3. 2

Now we consider the heredity of the sub-separation. The following
results show that sub-Ti (i= 1, 2, 212) separation axioms are hereditary.
Firstly, the concept of the extension is introduced. Let Y ⊆ X,A ∈ LY .
A∗ ∈ LX is defined as follows: ∀x ∈ X,

A∗(x) =

(
A(x), x ∈ Y.
0, x 6∈ Y.

Then A∗ is called the extension of A.

Theorem 3.2. Let (LX , δ) be L-ts and Y be a nonempty crisp subset of
X. If (LX , δ) is a sub-Ti space, then the subspace (L

Y , δ|Y ) is also a sub-Ti
space, where δ|Y = {G|Y : G ∈ δ}, i= 1, 2, 212 .

Proof. We only prove the case i=2 and i=212 .

Case i= 2: Let x, y ∈ Y with x 6= y. Since (LX , δ) is a sub-T2 space,
there exists λ ∈ M(L), and there are P ∈ η−(xλ∗) and Q ∈ η−(yλ∗) such
that P ∨Q = >X , where x

∗
λ, y∗λ are the extensions of xλ, yλ, respectively.

Notice that P ∈ η−(xλ∗) implies that P |Y ∈ η−(xλ). Similarly, Q|Y ∈
η−(yλ). Therefore, there exists λ ∈ M(L) and there are P |Y ∈ η−(xλ)
and Q|Y ∈ η−(yλ) such that (P |Y ) ∨ (Q|Y ) = >Y , i.e., (L

Y , δ|Y ) is also a
sub-T2 space.

Case i= 212 : Suppose that x, y ∈ Y with x 6= y. Since (LX , δ) is a
sub-T2 1

2
space, there exists λ ∈ M(L), and there are P ∈ η−(x∗λ) and

Q ∈ η−(y∗λ) such that P
◦ ∨ Q◦ = >X , where x

∗
λ, y

∗
λ is the extensions of

xλ, yλ, respectively. Noticing that P ∈ η−(x∗λ) implies that P |Y ∈ η−(xλ)
and Q ∈ η−(y∗λ) implies that Q|Y ∈ η−(yλ), then we have that there exists
λ ∈M(L) and there are P |Y ∈ η−(xλ) and Q|Y ∈ η−(yλ). Hence we need
only to show that (P |Y )◦ ∨ (Q|Y )◦ = >Y . In fact, from (P |Y )◦ ≥ (P ◦|Y ),
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we get that

(P |Y )◦ ∨ (Q|Y )◦ ≥ (P ◦|Y ) ∨ (Q◦|Y ) = >Y .

Thus (LY , δ|Y ) is also a sub-T2 12 space. 2

Theorem 3.3. Let (LX , δ) be L-ts , Y be a nonempty crisp subset of X
and χY ∈ δ

0
. If (LX , δ) is a sub-Ti space, then the subspace (L

Y , δ|Y ) is
also a sub-Ti space, where i= 3, 4.

Proof. We only prove this theorem only for the case i= 3. Since sub-T1
separation axiom is hereditary, we prove the theorem only for the sub-
regular case.

Let B be a nonempty pseudo-crisp closed set in (LY , δ|Y ) and y ∈ Y
with y 6∈ suppB. Since B ∈ (δ|Y )0 = δ

0 |Y , there exists A ∈ δ
0
such that

B = A|Y . And we have B = B∗|Y , where B∗ is the extension of B. It is easy
to prove that B∗ = A ∧ χY and B∗ is a nonempty pseudo-crisp closed set.
By the sub-regularity of (LX , δ) and y 6∈ suppB∗, there exists λ ∈ M(L)
, and there are P ∈ η−(y∗λ) and Q ∈ η−(λB∗) such that P ∨ Q = >X ,
where y∗λ is the extension of yλ. Then we know that P |Y ∈ η−(yλ) and
Q|Y ∈ η−(λB) such that (P |Y ) ∨ (Q|Y ) = >Y . This shows (L

Y , δ|Y ) is
also a sub-regular space. Therefore, the proof of the theorem is complete.2

In the end of this section, we show that sub-Ti (i= 1, 2, 2
1
2) separation

axioms are productive. First, a lemma is needed.

Lemma 3.4. Let (LX , δ), (LY , µ) be two L-ts, f→ : (LX , δ)→ (LY , µ) be
a closed bijection and f→, f← be continuous. If (LX , δ) is a sub-Ti space,
then so is (LY , µ), where i= 1, 2, 212 , 3, 4.

Proof. We prove the theorem only for the case i=1 and i=3.
Case i= 1: For any y, z ∈ Y with y 6= z, since f is a closed bijection,

there are u, v ∈ X with u 6= v such that f(u) = y, f(v) = z. Since (LX , δ)
is a sub-T1 space, there exists λ ∈ M(L), both there is P ∈ η−(uλ) such
that vλ ≤ P and there is Q ∈ η−(vλ) such that uλ ≤ Q . Therefore,

yλ = f→(uλ) 6≤ f→(P ), zλ = f→(vλ) ≤ f→(P ), and

zλ = f→(vλ) 6≤ f→(Q), yλ = f→(uλ) ≤ f→(Q).

From P,Q ∈ δ
0
and f← is continuous, we have f→(P ) ∈ η−(yλ) and

f→(Q) ∈ η−(zλ). Hence, (LY , µ) is a sub-T1 space.
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Case i= 3: For any y ∈ Y and nonempty pseudo-crisp closed set A ∈ µ
0

with y 6∈ suppA. Since f is closed bijection, there exist x ∈ X,B ∈ δ
0
such

that f(x) = y, f(B) = A i.e., x = f−1(y), B = f←(A). We have B ∈ δ
0

from f→ is continuous. It is easy to prove that B is a nonzero pseudo-crisp
closed set. From y 6∈ suppA, we have:

y 6∈ suppA⇒ A(y) = ⊥ ⇒ A(f(x)) = ⊥ (f(x) = y)
⇒ f←(A)(x) = ⊥ (by the definition of f←)
⇒ x 6∈ suppf←(A) = suppB.

For x ∈ X and B ∈ δ
0
with x 6∈ suppB, since (LX , δ) is a sub-T3 space,

there exists λ ∈ M(L), and there are P ∈ η−(xλ) and Q ∈ η−(λB) such
that P ∨Q = >X .

Therefore, yλ = f→(xλ) 6≤ f→(P ), λA = λf→(B) 6≤ f→(Q), f→(P ) ∨
f→(Q) = >Y . From P ∈ δ

0
and f← is continuous, we have f→(P ) ∈ η−(yλ)

and f→(Q) ∈ η−(λA). Thus, (LY , µ) is a sub-T3 space. 2

Theorem 3.5. Let {(LXt , δt)}t∈T be a family of L-ts and (LX , δ) be a
product topological space. If for any t ∈ T , (LXt , δt) is a sub-Ti space ,
then so is (LX , δ). If (LX , δ) is a sub-Ti space and (L

Xt , δt) is a fully strat-
ified space, then so is (LXt , δt) , where i= 1, 2, 2

1
2 .

Proof. We only prove the case i=2, other cases are obtained in the similar
way.

Necessity. Suppose that {(LXt , δt)}t∈T is a family of sub-T2 space. Let
∀x = {xt}t∈T , y = {yt}t∈T ∈ X with x 6= y, then there exists a r ∈ T
such that xr 6= yr. Since (LXr , δr) is a sub-T2 space, there exists λ ∈
M(L), and there are Br ∈ η−(xrλ), Cr ∈ η−(yrλ) such that Br ∨ Cr =
>Xr . Clearly, Pr

←(Br), Pr
←(Cr) ∈ δ

0
, Pr

←(Br)(x) = Br(x
r) 6≥ λ and

Pr
←(Cr)(y) = Cr(y

r) 6≥ λ. Furthermore, xλ 6≤ Pr
←(Br), yλ 6≤ P←r (Cr)

and Pr
←(Br) ∨ Pr←(Cr) = >X . Hence, we prove that (L

X , δ) is a sub-T2
space.

Sufficiency. Let (LX , δ) be a sub-T2 space and (L
Xr , δr) be a fully strat-

ified space, where r ∈ T . For any x = {xt}t∈T ∈ X, from Theorem 2.8.9

(Wang [16]), (LX̃r , δ|X̃r) which is parallel to (L
Xr , δr) through x is homeo-

morphic to (LXr , δr). Since (L
X̃r , δ|X̃r) is a sub-T2 space as a subspace of

(LX , δ), (LXr , δr) is a sub-T2 space from Lemma 3.4. 2
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The next result follows from the above Theorem.

Corollary 3.6. Let {(LXt , ωL(Tt))}t∈T be a family of L-ts topologically
generated by a family of topological spaces {(Xt, Tt)}t∈T and (LX , ωL(T ))
be a product L-ts of {(LXt , ωL(Tt))}t∈T . Then (LX , ωL(T )) is a sub-Ti
space iff for ∀t ∈ T, (LXt , ωL(Tt)) is a sub-Ti space, where T =

Q
t∈T

Tt, i=

1, 2, 212 .

4. The relations with respect to other separation axioms.

In this section, we make a comparison between separation axioms de-
fined in this paper and those presented by Chen and Meng [2], Fang and
Ren [3], Gu and Zhao [4], Ganguly and Saha [5], Kubiak [7], Kandil and
El-Shafee [8], Shi [14],Shi and Chen [15] and Wang [16], and offer a lot of
examples to show the relations between them. At first, we show that the
sub-separation axioms defined in this paper are harmonious.

From Definition 2.1, the following theorem is obvious .

Theorem 4.1. Let (LX , δ) be an L-ts. Then the following implications
hold:

(1) sub-T1⇒ sub-T0
(2) sub-T4 ⇒ sub-T3⇒ sub-T2

Theorem 4.2. Let (LX , δ) be an L-ts. Then sub-T2 ⇒ sub-T1.

Proof. Suppose that (LX , δ) is a sub-T2 space. For any x, y ∈ X with
x 6= y, since (LX , δ) is a sub-T2 space, there exists λ ∈M(L), and there are
P ∈ η−(xλ) and Q ∈ η−(yλ) such that P ∨Q = >X . From yλ ≤ P ∨Q and
yλ 6≤ Q, we have yλ ≤ P . Similarly, on account of xλ ≤ P ∨Q and xλ 6≤ P ,
then xλ ≤ Q. Hence, for any x ∈ X with x 6= y, there exists λ ∈ M(L),
both there is P ∈ η−(xλ) such that yλ ≤ P and there is Q ∈ η−(yλ) such
that xλ ≤ Q, i.e., (LX , δ) is a sub-T1 space. 2

From Theorem 4.1 and 4.2, we obtain the following result that shows
the sub-separation axioms are harmonious.

Corollary 4.3. sub-T4 ⇒ sub-T3⇒ sub-T2⇒ sub-T1⇒ sub-T0.



Some separation axioms in L-topological spaces 137

Theorem 4.4. Let (LX , δ) be an L-ts. Then sub-T2
1
2 ⇒ sub-T2.

Proof. Let (LX , δ) be a sub-T2
1
2 space. For any x, y ∈ X with x 6= y,

since (LX , δ) is a sub-T2
1
2 space, there exists λ ∈ M(L), and there are

P ∈ η−(xλ) and Q ∈ η−(yλ) such that P ◦ ∨ Q◦ = >X . Noticing that
P ◦ ∨Q◦ ≤ P ∨Q, we get that P ∨Q = >X . Therefore, (L

X , δ) is a sub-T2
space. 2

The following example shows that the L-unit interval I(L) need not
satisfy the sub-T1 axiom.

Example 4.5. The [0,1]-real line [0, 1](I) does not satisfy sub-T1 axiom.
In fact, take x, y ∈ [0, 1](I) satisfying ∀t ∈ R

x(t) =

⎧⎪⎨⎪⎩
1, t ∈ (−∞, 0),
0.5, t ∈ [0, 1],
0, t ∈ (1,+∞),

y(t) =

⎧⎪⎨⎪⎩
1, t ∈ (−∞, 0),
0.6, t ∈ [0, 1],
0, t ∈ (1,+∞).

For convenience, we only consider P or Q which has the forms of R
0
s∨L

0
t.

Case I: When 0 < λ ≤ 0.4, we have that

ε(xλ) = ∨{t | xλ ≤ L
0
t} = ∨{t | λ ≤ x(t−)} = 1;

σ(xλ) = ∧{s | xλ ≤ R
0
s} = ∧{s | λ ≤ x(s+)

0} = 0.

Hence,

xλ 6≤ L
0
t ∨R

0
s ⇒ t > 1, s < 0.

Then we get that

(L
0
t ∨R

0
s)(y) = 0 from t > 1, s < 0.

Naturally, we obtain that yλ 6≤ L
0
t ∨R

0
s.

Case II: When 0.4 < λ ≤ 0.5, we have that

ε(xλ) = ∨{t | xλ ≤ L
0
t} = 1; σ(xλ) = ∧{s | xλ ≤ R

0
s} = 0.

Hence,

xλ 6≤ L
0
t ∨R

0
s ⇒ t > 1, s < 0.
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Then we get that

(L
0
t ∨R

0
s)(y) = 0 from t > 1, s < 0⇒ yλ 6≤ L

0
t ∨R

0
s.

Case III: When 0.5 < λ ≤ 0.6, we have that

ε(yλ) = ∨{t | xλ ≤ L
0
t} = 1; σ(yλ) = ∧{s | yλ ≤ R

0
s} = 1.

Hence,

yλ 6≤ L
0
t ∨R

0
s ⇒ t > 1, s < 1.

Then we get that

(L
0
t ∨R

0
s)(x) ≤ 0 ∨ 0.5 = 0.5 from t > 1, s < 1⇒ xλ 6≤ L

0
t ∨R

0
s.

Case IV: When 0.6 < λ ≤ 1, we have that

ε(xλ) = ∨{t | xλ ≤ L
0
t} = 0; σ(xλ) = ∧{s | xλ ≤ R

0
s} = 1.

Hence,

xλ 6≤ L
0
t ∨R

0
s ⇒ t > 0, s < 1.

Then we get that

(L
0
t ∨R

0
s)(y) ≤ 0.5 ∨ 0.4 = 0.5 from t > 0, s < 1⇒ yλ 6≤ L

0
t ∨R

0
s.

From case I, II, III and IV, we have that [0, 1](I) does not satisfy the
sub-T1 axiom. 2

Remark 4.6. From the above example , we know that the L-unit interval
need not satisfy the sub-T1 axiom. So the L-unit interval is not compatible
with the sub-separation axioms proposed in this paper.

Next we make a comparison between the sub-separation axioms and
those presented by Kubiak [7].

Theorem 4.7. Let (LX , δ) be an L-ts. Then sub-T1 ⇒ Kubiak-T1.

Proof. Let (LX , δ) be sub-T1. In order to prove that (L
X , δ) is Kubiak-

T1, take x, y ∈ X with x 6= y. Then there exists λ ∈ M(L), and there
are P ∈ η−(xλ) and Q ∈ η−(yλ) such that yλ ≤ P , xλ ≤ Q , respec-
tively. Taking U = P

0
, V = Q

0
, we have that U, V ∈ δ , U(x) 6≤ U(y) and
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V (y) 6≤ V (x). Therefore, (LX , δ) is Kubiak-T1. 2

In general, Kubiak-T1 need not imply our sub-T1. This can be seen
from the following example.

Example 4.8. Let L={⊥, a, b,>} satisfy a ∨ b = >, a ∧ b = ⊥, a0 = b
and X = {x, y} with x 6= y. Take δ = {⊥X ,>X , xa, yb, xa ∨ yb}, then
δ
0
= {⊥X ,>X ,M,N,R}, where M,N and R are defined as follows:

M(x) = b, M(y) = >; N(x) = >, N(y) = a; R(x) = b, R(y) = a.

We can prove that (LX , δ) is not sub-T1 , but it is Kubiak-T1. Now
we show that (LX , δ) is not sub-T1. We need to show that ∀λ ∈ M(L),
∀P ∈ η−(xλ) such that yλ 6≤ P , or ∀Q ∈ η−(yλ) such that xλ 6≤ Q. In fact,
we have that P ∈ η−(xλ) = {⊥X ,M,R}, Q ∈ η−(yλ) = {⊥X} when λ = a.
Hence we get that xλ 6≤ Q. Similarly, we have that P ∈ η−(xλ) = {⊥X},
Q ∈ η−(yλ) = {⊥X , N,R} when λ = b. Then we obtain that yλ 6≤ P .
Therefore (LX , δ) is not sub-T1. Next we show that (LX , δ) is Kubiak-
T1. Taking U = xa, V = yb, we get that U, V ∈ δ, U(x) 6≤ U(y) and
V (y) 6≤ V (x). 2

Theorem 4.9. Let (LX , δ) be an L-ts and > be a molecule. Then sub-T2
⇒ Kubiak-T2.

Proof. For any x, y ∈ X with x 6= y, since (LX , δ) is a sub-T2 space,
there exists λ ∈ M(L) , there are P ∈ η−(xλ) and Q ∈ η−(yλ) such that
P ∨Q = >X . Taking U = P

0
, V = Q

0
, we have that U, V ∈ δ, U(x) 6≤ U(y)

and V (y) 6≤ V (x). Now we only need to prove that U ≤ V
0
i.e. P

0 ≤ Q.
In fact, since P ∨ Q = >X and > is a molecule, we have that P (x) = >
or Q(x) = > for ∀x ∈ X. Easily we get P

0 ≤ Q i.e. U ≤ V
0
. Therefore

(LX , δ) is a Kubiak-T2 space.

Remark 4.10. If > is not a molecule, is Theorem 4.9 true? We leave it
as an open problem. Generally, Kubiak-T2 need not imply sub-T2 (seeing
Example 4.11 below). 2

Example 4.11. Let L=[0,1] and X = {x, y}. Take δ={⊥X ,>X , A,B, 0.3
∗,

0.7∗}, where A,B are defined as follows:
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A(x) = 0.7, A(y) = 0.3; B(x) = 0.3, B(y) = 0.7

Then we get that (LX , δ) is a Kubiak-T2 space. In fact, taking U =
A, V = B, we get that U(x) 6≤ U(y) V (y) 6≤ V (x) and U ≤ V

0
. It is

easy to check that (LX , δ) is not a sub-T2 space. For ∀λ ∈M(L), we get
that η−(xλ), η−(yλ) ⊆ {⊥X , A,B, 0.3∗, 0.7∗}. Therefore for ∀P ∈ η−(xλ),
∀Q ∈ η−(yλ), we have P ∨Q ≤ 0.7∗. Hence (LX , δ) is not a sub-T2 space.2

Now, we discuss the relation between the sub-separation axioms and
other separation axioms presented by Shi[14], Wang[16], Gu and Zhao[4].
The following two examples show that sub-T2 need not imply L-T2 and
L-T2 also need not imply sub-T2.

Example 4.12. Let L=[0,1] andX = {x, y}. Take δ = {⊥X ,>X , C1, C2, C1∨
C2}, where Ci is defined as follows:

C1(x) = 0.5, C1(y) = 0; C2(x) = 0, C2(y) = 0.5.

Easily we get that (LX , δ) is a sub-T2 space. In fact, taking λ =
2
3 ,P = C

0
1

and Q = C
0
2, we get that P ∈ η−(xλ), Q ∈ η−(yλ) and P ∨Q = >X . It is

easy to check that (LX , δ) is not L-T2. 2

Example 4.13. Let L, X and δ be defined as in Example 4.11. From
Example 4.11, we know that (LX , δ) is not a sub-T2 space. Next we prove
that (LX , δ) is L-T2. Take Q = A,P = B

0
, then Q ∈ δ, P ∈ δ

0
,Q ≤ P and

Q(x) 6≤ P (y). 2

Lemma 4.14 (Wang [16]). If (LX , δ) is N-compact and T2, then it is T4. 2

Obviously, we have the following result.

Theorem 4.15. If (LX , δ) is N-compact and T2, then it is sub-Ti , where
i= 1, 2, 212 , 3, 4. 2

Lemma 4.16 (Gu and Zhao [4]). Let (LX , δ) be an L-ts. Then,
(1) (LX , δ) is Layer T0 iff for any xλ, yλ ∈M(LX) with x 6= y, there exists

P ∈ δ
0
such that xλ 6≤ P and yλ ≤ P or xλ ≤ P and yλ 6≤ P .

(2) (LX , δ) is Layer T1 iff for any xλ, yλ ∈M(LX) with x 6= y, there exists
P ∈ δ

0
such that xλ 6≤ P and yλ ≤ P .
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(3) (LX , δ) is Layer T2 iff for any xλ, yλ ∈M(LX) with x 6= y, there exist
P,Q ∈ δ

0
such that P ∈ η−(xλ) ,Q ∈ η−(yλ) and P ∨Q ≥ [λ]. 2

By Lemma 4.16, we have the following conclusion.

Theorem 4.17. Let (LX , δ) be an L-ts. If (LX , δ) is a layer Ti space, then
it is a sub-Ti space, where i= 0, 1.2

Lemma 4.18 (Gu and Zhao [4]). Let (LX , δ) be an L-ts. If (LX , δ) is a Ti
space, then it is a layer Ti space, where i= 0, 1, 2.2

Therefore, by Theorem 4.17, Lemmas 4.18, 4.16 (3), the following re-
sults hold.

Corollary 4.19. (1) Ti ⇒ layer Ti⇒ sub-Ti, where i= 0, 1.

(2) layer T2⇒ sub-T2 whenever the largest element > is a molecule. 2

In the following, we give an example showing that a sub-T2 space need
not be a layer T2 space, to say nothing of being T2.

Example 4.20. Let L,X and δ be defined as in Example 4.12. From Exam-
ple 4.12, we know that (LX , δ) is a sub-T2 space. But (L

X , δ) is not a layer
T2 space. In fact, taking α =

1
3 , then we get that (X, (τα(δ

0
))
0
) = {Ø,X}.

Clearly, (X, (τα(δ
0
))
0
) is not a T2 space. From Definition 1.5, we know that

(LX , δ) is not a layer T2 space. It is easy to prove that (L
X , δ) is not a T2

space. 2

From all of examples above, we find that, in general, all sub-separation
axioms in this paper are weaker than other separation axioms that had
appeared in literature. Indeed, there are many L-topological spaces which
satisfy sub-separation axioms, but doesn’t fulfill other separation axioms.
This is one of differences between sub-separation axioms and other separa-
tion axioms. For examples, there are good work on separation axioms of
L-topological spaces in [2], [3], [5] and [8]. In the following, we will offer
more examples to show that our sub-separation axioms is very different
from separation axioms established in these papers. For simplicity, we only
consider T2 1

2
and T2 separation axiom therein. Recall the definition ofWT2

in [3] as follows.
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Definition 4.21. An L-ts (LX , δ) is called aWT2-space if for any xλ, yµ ∈
M(LX) with x 6= y, there are P ∈ η−(xλ) and Q ∈ η−(yµ) such that
P ∨Q ≥ (λ ∨ µ)∗. 2

Remarks 4.22. (1) For an L-ts (LX , δ), it is easy to check its T2 1
2
[2]

(seeing Definition 1.2 introduced in the paper) means sub-T2 1
2
, but Example

4.23 below shows that the converse needn’t be true.

(2) For an L-ts (LX , δ), it is easy to check itsWT2 implies sub-T2 when-
ever the largest element > is a molecule, and Example 4.23 below proves
that the converse needn’t be true. 2

Example 4.23. Let L be the completely distributive De Morgan algebra
having four elements: ⊥, a, b, > satisfying a ∨ b = >, a ∧ b = ⊥, a0 = b,
and X = {x, y} (x 6= y). Take δ0 = {⊥X , >X , xa ∨ yb, xb ∨ ya}. We will
show the following conclusions.

(i) The L-ts (LX , δ) is sub-T2. In fact, nowM(L) = {a, b}. For x, y ∈ X
with x 6= y, there is λ = a , and also P = xb ∨ ya ∈ η−(xλ), Q = xa ∨ yb ∈
η−(yλ) such that P ∨Q = >X . Thus (L

X , δ) is sub-T2, as desired.

(ii) The L-ts (LX , δ) is sub-T0 and also sub-T1. These can be obtained
by (i) and Theorems 4.1(1), 4.2.

(iii) The L-ts (LX , δ) isn’t WT2 in the sense of [3]. Letting xa, yb ∈
M(LX), it is easy to check η−(xa)={⊥X , xb∨ya} and η−(yb)={⊥X , xb∨ya}.
Hence for any P ∈ η−(xa) and Q ∈ η−(yb), it cannot be true that

P ∨Q ≥ (a ∨ b)∗ = >X ,

where (a ∨ b)∗ is the constant L-set with its value (a ∨ b) in the sense of
[3]. In fact, for any P ∈ η−(xa) and Q ∈ η−(yb), P ∨ Q ≤ xb ∨ ya, but
xb∨ya ≤ >X and xb∨ya 6= >X . By Definition 4.21 ofWT2, the L-ts (L

X , δ)
isn’t WT2.

(iv) The L-ts (LX , δ) is sub-T2 1
2
. Let P = xb ∨ ya and Q = xa ∨ yb. It

is observed that both P and Q are open since P 0 = Q and Q0 = P. For
the unique pair of x and y with x 6= y, putting λ = a ∈ M(L), there are
P ∈ η−(xλ) and Q ∈ η−(yλ) such that

P ◦ ∨Q◦ = P ∨Q = >X .

Thus , (LX , δ) is sub-T2 1
2
by Definition 2.1 (3).

(v) The (LX , δ) isn’t T2 1
2
in the sense of [2] (see Definition 1.2 also).
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Indeed, η−(xa) = {xb ∨ ya} and η−(yb) = {xb ∨ ya}. We find that
there are two points xa, yb ∈ M(LX) with x 6= y such that for any P ∈
η−(xa) = {xb ∨ ya} and Q ∈ η−(yb) = {xb ∨ ya} (it must be P = xb ∨ ya
and Q = xb ∨ ya)

P ◦ ∨Q◦ = P ∨Q = xb ∨ ya 6= >X .

It implies that (LX , δ) isn’t T2 1
2
by Definition 1.2, as desired. 2

In [15],Shi and Chen redefined Urysohn in L-topology, where it was
called Shi-Urysohn. Now we consider the relation between the Shi-Urysohn
axiom and our sub-T2 1

2
axiom. Recall the definition of Shi-Urysohn axiom

in [15] as follows.

Definition 4.24. (Shi and Chen [15]).

An L-ts (LX , δ) is said to be Urysohn if any xλ, yµ ∈ M(LX) with
xλ 6≤ yµ, there exist P ∈ η−(xλ) and Q ∈ ℵ◦(yµ) such thatP ◦ ≥ Q−, where
ℵ◦(yµ) = {V : yµ ≤ V, V ∈ δ}. 2

The following example shows that our sub-T2 1
2
need not imply Shi-

Urysohn.

Example 4.25. Let X = L = [0, 1], and δ = {χE : E ⊂ X}, where χE is
the characteristic function of E. Then δ is a [0,1]-topology on X. It is easy
to check that (LX , δ) is T2 1

2
(Urysohn), then it is sub-T2 1

2
. But it is not

Shi-Urysohn . In fact, for any x ∈ X and any P ∈ η−(x>), it follows that
P ◦(x) = ⊥. But there is no Q ∈ ℵ◦(x0.5) such that P ◦ ≥ Q−. 2

Remark 4.26. Does the Shi-Urysohn axiom imply our sub-T2 1
2
? We can’t

solve it. So we leave it as an open problem. 2

To discuss the relation between sub-T2 separation axiom and other T2
separation axiom introduced in [5] and [8]. Note that we consider the case
of L = I = [0, 1], the unit interval, so that the conclusions is available for
the membership valued lattice using in the published papers [6] and [9].
We introduce some definitions for the convenience of readers.

Definition 4.27. (Liu and Luo[11]). Let xλ ∈M(IX) and A,B ∈ IX . We
say xλ quasi-coincides with A, or say xλ is quasi-coincident with A, denoted
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by xλqA, if A(x) + λ > >; say A quasi-coincides with B at x ∈ X, or say
A is quasi-coincident with B at x, AqB at x for short, if A(x)+B(x) > >;
say A quasi-coincides with B, or say A is quasi-coincident with B, denoted
by AqB, if A quasi-coincides with B at some point x ∈ X. Relation “does
not quasi-coincides with” or “is not quasi-coincident with” is denoted by q.
2

Definitio 4.28. (Liu [9]). Let (IX , δ) be I-ts and xλ ∈ M(IX). A fuzzy
set U is called a quasi-coincident neighborhood (q-nbd, for short) of xλ if
there exists V ∈ δ such that xλqV and V ≤ U . 2

Definition 4.29. (C.K. Wong [16]). Let (IX , δ) be an I-ts, A ∈ IX and
xλ ∈M(IX).

A is said to be a neighborhood (nbd, in short) in (X, δ) iff there is a
B ∈ δ such that xλ ≤ B ≤ A. Therefore, an open set U ∈ δ is the nbd of
each of its points. 2

Definition 4.30. (S. Ganguly and S. Saha [5]). An I-ts (IX , δ) is GS-T2
(Originally, T2) iff for any two distinct points xλ and yµ:

Case I. When x 6= y, xλ and yµ have open nbds which are not quasi-
coincident.

Case II. When x = y and λ < µ , then yµ has an open q-nbd V and
xλ has an open nbd U such that V qU . 2

Definition 4.31. (A. Kandil and M.E. El-Shafee [8]). An I-ts (IX , δ) is
FT2 if ∀xλ, yµ ∈M(IX) with xλqyµ, there exist Qxλ ∈ δ and Qyµ ∈ δ such
that

λ ≤ Qxλ(x), µ ≤ Qyµ(y) and QxλqQyµ .2

Remark 4.32. The following Example 4.33 shows that our sub-T2 needn’t
be GS-T2 in the sense of Definition 4.30. 2

Example 4.33. Let (IX , δ) be the I-ts defined in Example 4.12. We have
showed that (IX , δ) is a sub-T2 space in Example 4.12. Now we assert
that (IX , δ) isn’t GS-T2 in the sense of Definition 4.30. Taking λ =

1
8 and

µ = 1
4 , then xλ and xµ are different points with λ < µ. Moreover, >X is

the unique open Q-neighborhood of xµ and the set of open neighborhood
of xλ is A = {C1, C1∨C2,>X}. Obviously, for each V ∈ A, we cannot have
V q>X . Thus, (I

X , δ) isn’t GS-T2 in the sense of Definition 4.30. 2
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Remark 4.34. The following Example 4.35 shows that our sub-T2 needn’t
be FT2 in the sense of Definition 4.31. 2

Example 4.35. Let (IX , δ) be the I-ts defined in Example 4.12. We have
showed that (IX , δ) is a sub-T2 space in Example 4.12. Now we assert that
(IX , δ) isn’t FT2. For the x, y ∈ X with x 6= y, taking λ = 1

3 , then xλqyλ.
The unique neighborhood of xλ and yλ is >X , moreover >Xq>X never is
true. Hence (IX , δ) isn’t FT2. 2
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