Proyecciones Journal of Mathematics Vol. 31, N° 3, pp. 235-246, September 2012. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172012000300004

On (i, j)- ω -preopen sets

N. RAJESH Rajah Serfoji Govt. College, India and JAMAL M. MUSTAFA Al al-Bayt University, Jordan Received : August 2010. Accepted : May 2012

Abstract

In this paper, we introduce and study the notion of (i, j)- ω -preopen sets as a generalization of (i, j)-preopen sets in bitopological space.

Keywords : Bitopological spaces, (i, j)-preopen sets, (i, j)-precontinuous functions.

Subjclass : [2000], 54C10, 54D10.

1. Introduction and Preliminaries

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the variously modified forms of continuity, separation axioms etc. by utilizing generalized open sets. The concept of a bitopological space was introduced by Kelly [4]. On the other hand Jelic [2] introduced the concept of preopen sets in bitopological spaces. In this paper, we introduce and study the notion of (i, j)- ω -preopen sets as a generalization of (i, j)-preopen sets in bitopological spaces. Throughout this paper, spaces means bitopological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, the closure and the interior of A are denoted by (A) and (A), respectively. A subset A of a bitopological space (X, τ_1, τ_2) is said to be (i, j)-preopen [2] if $A \subset \tau_i$ - $(\tau_j$ -(A)), where i, j = 1, 2 and $i \neq j$. The complement of an (i, j)-preopen set is said to be (i, j)-preclosed set ([3], [5]). The (i, j)-preclosure [5] of A, denoted by (i, j)-p(A), is defined by the intersection of all (i, j)-preclosed sets containing A. The (i, j)-preinterior [6] of A, denoted by (i, j)-p(A), is defined by the union of all (i, j)-preopen sets contained in A. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be (i, j)-precontinuous ([3], [5]) if the inverse image of every σ_i -open set in (Y, σ_1, σ_2) is (i, j)-preopen in (X, τ_1, τ_2) , where $i \neq j, i, j = 1, 2$.

2. (i, j)- ω -preopen sets

Definition 2.1. A subset A is said to be (i, j)- ω -preopen if for each $x \in A$ there exists an (i, j)-preopen set U_x containing x such that $U_x \setminus A$ is a countable set. The complement of an (i, j)- ω -preopen subset is said to be (i, j)- ω -preclosed.

The family of all (i, j)- ω -preopen (resp. (i, j)- ω -preclosed) subsets of a space (X, τ_1, τ_2) is denoted by (i, j)- $\omega PO(X)$ (resp. (i, j)- $\omega PC(X)$). Also, The family of all (i, j)- ω -preopen sets of (X, τ_1, τ_2) containing x is denoted by (i, j)- $\omega PO(X, x)$.

It is clear that every (i, j)-preopen set is (i, j)- ω -preopen. The following example shows that the converse is not true in general.

Example 2.2. Let $X = \{a, b, c\}, \tau_1 = \{, \{a\}, X\}$ and $\tau_2 = \{, \{b\}, X\}$. Then $\{a, c\}$ is (i, j)- ω -preopen but not (i, j)-preopen in (X, τ_1, τ_2) . **Lemma 2.3.** A subset A of a bitopological space (X, τ_1, τ_2) is (i, j)- ω -preopen if and only if for every $x \in A$, there exists an (i, j)-preopen subset U_x containing x and a countable subset C such that $U_x \setminus C \subset A$.

Proof. Let A be (i, j)- ω -preopen and $x \in A$, then there exists an (i, j)- ω -preopen subset U_x containing x such that $U_x \setminus A$ is countable. Let $C = U_x \setminus A = U_x \cap (X \setminus A)$. Then $U_x \setminus C \subset A$. Conversely, let $x \in A$. Then there exists an (i, j)- ω -preopen subset U_x containing x and a countable subset C such that $U_x \setminus C \subset A$. Thus, $U_x \setminus A \subset C$ and $U_x \setminus A$ is countable. \Box

Theorem 2.4. Let (X, τ_1, τ_2) be a bitopological space and $C \subset X$. If C is (i, j)- ω -preclosed, then $C \subset K \cup B$ for some (i, j)- ω -preclosed subset K and a countable subset B.

Proof. If C is (i, j)- ω -preclosed, then $X \setminus C$ is (i, j)- ω -preopen and hence for every $x \in X \setminus C$, there exists an (i, j)- ω -preopen set U containing x and a countable set B such that $U \setminus B \subset X \setminus C$. Thus $C \subset X \setminus (U \setminus B) =$ $X \setminus (U \cap (X \setminus B)) = (X \setminus U) \cup B$. Let $K = X \setminus U$. Then K is (i, j)- ω -preclosed such that $C \subset K \cup B$. \Box

Proposition 2.5. The union of any family of (i, j)- ω -preopen sets is (i, j)- ω -preopen.

Proof. If $\{A_{\alpha} : \alpha \in \Lambda\}$ is a collection of (i, j)- ω -preopen subsets of X, then for every $x \in \bigcup_{\alpha \in \Lambda} A_{\alpha}, x \in A_{\gamma}$ for some $\gamma \in \Lambda$. Hence there exists an (i, j)-preopen subset U of X containing x such that $U \setminus A_{\gamma}$ is countable. Now as $U \setminus \bigcup_{\alpha \in \Lambda} A_{\alpha} \subset U \setminus A_{\gamma}$ and thus $U \setminus \bigcup_{\alpha \in \Lambda} A_{\alpha}$ is countable. Therefore, $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is (i, j)- ω -preopen. \Box

Definition 2.6. The union of all (i, j)- ω -preopen sets contained in $A \subset X$ is called the (i, j)- ω -preinterior of A, and is denoted by (i, j)- $\omega p(A)$. The intersection of all (i, j)- ω -preclosed sets of X containing A is called the (i, j)- ω -preclosure of A, and is denoted by (i, j)- $\omega p(A)$.

Theorem 2.7. Let A and B be subsets of (X, τ_1, τ_2) . Then the following properties hold:

(i) (i, j)- $\omega p(A)$ is the largest (i, j)- ω -preopen subset of X contained in A.

- (ii) A is (i, j)- ω -preopen if and only if A = (i, j)- $\omega p(A)$.
- (iii) (i, j)- $\omega p((i, j)$ - $\omega p(A)) = (i, j)$ - $\omega p(A)$.
- (iv) If $A \subset B$, then (i, j)- $\omega p(A) \subset (i, j)$ - $\omega p(B)$.
- (v) (i, j)- $\omega p(A \cap B) \subset (i, j)$ - $\omega p(A) \cap \subset (i, j)$ - $\omega p(B)$.
- (vi) (i, j)- $\omega p(A) \cup (i, j)$ - $\omega p(B) \subset (i, j)$ - $\omega p(A \cup B)$.

Proof. (v). Since $A \cap B \subset A$ and $A \cap B \subset B$, by (iv), we have (i, j)- $\omega p(A \cap B) \subset (i, j)$ - $\omega p(A)$ and (i, j)- $\omega p(A \cap B) \subset (i, j)$ - $\omega p(B)$. Therefore, (i, j)- $\omega p(A \cap B) \subset (i, j)$ - $\omega p(A) \cap (i, j)$ - $\omega p(B)$. (vi). We have (i, j)- $\omega p(A) \subset (i, j)$ - $\omega p(A \cup B)$ and (i, j)- $\omega p(B) \subset (i, j)$ - $\omega p(A \cup B)$. Then we obtain (i, j)- $\omega p(A) \cup (i, j)$ - $\omega p(B) \subset (i, j)$ - $\omega p(A \cup B)$. The other proof are obvious. \Box

Theorem 2.8. Let A and B be subsets of (X, τ_1, τ_2) . Then the following properties hold:

- (i) (i, j)- $\omega p(A)$ is the smallest (i, j)- ω -preclosed subset of X containing A.
- (ii) A is (i, j)- ω -preclosed if and only if A = (i, j)- $\omega p(A)$.
- (iii) (i, j)- $\omega p((i, j)$ - $\omega p(A)) = (i, j)$ - $\omega p(A)$.
- (iv) If $A \subset B$, then (i, j)- $\omega p(A) \subset (i, j)$ - $\omega p(B)$.
- (v) (i, j)- $\omega p(A) \cup (i, j)$ - $\omega p(B) \subset (i, j)$ - $\omega p(A \cup B)$.
- (vi) (i, j)- $\omega p(A \cap B) \subset (i, j)$ - $\omega p(A) \cap (i, j)$ - $\omega p(B)$.

Proof. The proofs follows from the definitions. \Box

Theorem 2.9. Let (X, τ_1, τ_2) be a bitopological space and $A \subset X$. A point $x \in (i, j)$ - $\omega p(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in (i, j)$ - $\omega PO(X, x)$.

Proof. Suppose that $x \in (i, j) \cdot \omega p(A)$. We shall show that $U \cap A \neq \emptyset$ for every $U \in (i, j) \cdot \omega PO(X, x)$. Suppose that there exists $U \in (i, j) \cdot \omega PO(X, x)$ such that $U \cap A = \emptyset$. Then $A \subset X \setminus U$ and $X \setminus U$ is $(i, j) \cdot \omega PO(X, x)$ such that $U \cap A = \emptyset$. Then $A \subset X \setminus U$ and $X \setminus U$ is $(i, j) \cdot \omega PO(X, x)$ such that $U \cap A = \emptyset$. Then $A \subset X \setminus U$ and $X \setminus U$ is $(i, j) \cdot \omega PO(X, x)$ since $A \subset X \setminus U$, $(i, j) \cdot \omega p(A) \subset (i, j) \cdot \omega p(X \setminus U)$. Since $x \in (i, j) \cdot \omega p(A)$, we have $x \in (i, j) - \omega p(X \setminus U)$. Since $X \setminus U$ is $(i, j) \cdot \omega - \text{preclosed}$, we have $x \in X \setminus U$; hence $x \notin U$, which contradicts the fact that $x \in U$. Therefore, $U \cap A \neq \emptyset$. Conversely, suppose that $U \cap A \neq \emptyset$ for every $U \in (i, j) - \omega PO(X, x)$. We shall show that $x \in (i, j) - \omega PO(X, x)$ such that $U \cap A = (X \setminus (i, j) - \omega p(A)) \cap A \subset (X \setminus A) \cap A = \emptyset$. This is a contradiction to $U \cap A \neq \emptyset$; hence $x \in (i, j) - \omega p(A)$. \Box

Theorem 2.10. Let (X, τ_1, τ_2) be a bitopological space and $A \subset X$. Then the following properties hold:

- (i) (i, j)- $\omega p(X \setminus A) = X \setminus (i, j)$ - $\omega p(A);$
- (i) (i, j)- $\omega p(X \setminus A) = X \setminus (i, j)$ - $\omega p(A)$.

Proof. (i). Let $x \in X \setminus (i, j) \cdot \omega p(A)$. Since $x \notin (i, j) \cdot \omega p(A)$, there exists $V \in (i, j) \cdot \omega PO(X, x)$ such that $V \cap A = \emptyset$; hence we obtain $x \in (i, j) \cdot \omega p(X \setminus A)$. This shows that $X \setminus (i, j) \cdot \omega p(A) \subset (i, j) \cdot \omega p(X \setminus A)$. Let $x \in (i, j) \cdot \omega p(X \setminus A)$. Since $(i, j) \cdot \omega p(X \setminus A) \cap A = \emptyset$, we obtain $x \notin (i, j) \cdot \omega p(A)$; hence $x \in X \setminus (i, j) \cdot \omega p(A)$. Therefore, we obtain $(i, j) \cdot \omega p(X \setminus A) = X \setminus (i, j) \cdot \omega p(A)$.

(ii). Follows from (i). \Box

Definition 2.11. A subset B_x of a bitopological space (X, τ_1, τ_2) is said to be an (i, j)- ω -preneighbourhood of a point $x \in X$ if there exists an (i, j)- ω -preopen set U such that $x \in U \subset B_x$.

Theorem 2.12. A subset of a bitopological space (X, τ_1, τ_2) is (i, j)- ω -preopen if and only if it is an (i, j)- ω -preneighbourhood of each of its points.

Proof. Let G be an (i, j)- ω -preopen set of X. Then by definition, it is clear that G is an (i, j)- ω -preneighbourhood of each of its points, since for every $x \in G$, $x \in G \subset G$ and G is (i, j)- ω -preopen. Conversely, suppose G is an (i, j)- ω -preneighbourhood of each of its points. Then for each $x \in G$, there exists $S_x \in (i, j)$ - ω PO(X) such that $S_x \subset G$. Then $G = \bigcup \{S_x : x \in G\}$. Since each S_x is (i, j)- ω -preopen, G is (i, j)- ω -preopen in (X, τ_1, τ_2) . \Box **Theorem 2.13.** If each nonempty (i, j)-preopen set of a bitopological space (X, τ_1, τ_2) is uncountable, then (i, j)-p(A) = (i, j)- $\omega p(A)$ for each subset $A \in \tau_1 \cap \tau_2$.

Proof. Clearly $(i, j)-\omega p(A) \subset (i, j)-p(A)$. On the other hand, let $x \in (i, j)-p(A)$ and B be an $(i, j)-\omega$ -preopen subset containing x. Then by Lemma 2.3, there exists an (i, j)-preopen set V containing x and a countable set C such that $V \setminus C \subset B$. Thus $(V \setminus C) \cap A \subset B \cap A$ and so $(V \cap A) \setminus C \subset B \cap A$. Since $x \in V$ and $x \in (i, j)-p(A)$, $V \cap A \neq \emptyset$ and $V \cap A$ is (i, j)-preopen since V is (i, j)-preopen and $A \in \tau_1 \cap \tau_2$. By the hypothesis each nonempty (i, j)-preopen set of X is uncountable and so is $(V \cap A) \setminus C$. Thus $B \cap A$ is uncountable. Therefore, $B \cap A \neq \emptyset$ which means that $x \in (i, j)-\omega p(A)$. \Box

Corollary 2.14. If each nonempty (i, j)-preclosed set of a bitopological space (X, τ_1, τ_2) is uncountable, then (i, j)-p(A) = (i, j)- $\omega p(A)$ for each $A \in \tau_1 \cap \tau_2$.

Theorem 2.15. If every (i, j)-preopen subset of X is τ_i -open in (X, τ_1, τ_2) , then (X, (i, j)- $\omega PO(X))$ is a topological space.

Proof. (i). We have \emptyset , $X \in (i, j) \cdot \omega PO(X)$. (ii). Let $U, V \in (i, j) \cdot \omega PO(X)$ and $x \in U \cap V$. Then there exist (i, j)-preopen sets $G, H \in X$ containing x such that $G \setminus U$ and $H \setminus V$ are countable. And $(G \cap H) \setminus (U \cap V) = (G \cap H) \cap ((X \setminus U) \cup (X \setminus V)) \subset (G \cap (X \setminus U)) \cup (H \cap (X \setminus V))$. Hence $(G \cap H) \setminus (U \cap V)$ is countable and by hypothesis, the intersection of two (i, j)-preopen sets is (i, j)-preopen. Hence $U \cap V \in (i, j) \cdot \omega PO(X)$. (iii). Let $\{U_i : i \in I\}$ be any family of $(i, j) \cdot \omega$ -preopen sets of X. Then, by Proposition 2.5 $\bigcup_{i=1}^{n} U_i$ is $(i, j) \cdot \omega$ -preopen. \Box

3. (i, j)- ω -precontinuous functions

Definition 3.1. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be (i, j)- ω -precontinuous if the inverse image of every σ_i -open set of Y is (i, j)- ω -preopen in X, where $i \neq j, i, j=1, 2$.

It is clear that every (i, j)-precontinuous function is (i, j)- ω -precontinuous but not conversely.

Example 3.2. Let $X = \{a, b, c\}, \tau = \{, \{a\}, X\}$ and $\sigma = \{, \{a, c\}, X\}$. Clearly the identity function $f : (X, \tau) \to (X, \sigma)$ is (i, j)- ω -precontinuous but not (i, j)-precontinuous. **Theorem 3.3.** For a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following statements are equivalent:

- (i) f is (i, j)- ω -precontinuous;
- (ii) For each point x in X and each σ_i -open set F in Y such that $f(x) \in F$, there is an (i, j)- ω -preopen set A in X such that $x \in A$, $f(A) \subset F$;
- (iii) The inverse image of each σ_i -closed set in Y is (i, j)- ω -preclosed in X;
- (iv) For each subset A of X, $f((i, j)-\omega p(A)) \subset \sigma_i (f(A));$
- (v) For each subset B of Y, (i, j)- $\omega p(f^{-1}(B)) \subset f^{-1}(\sigma_i (B));$
- (vi) For each subset C of Y, $f^{-1}(\sigma_i (C)) \subset (i, j) \omega p(f^{-1}(C))$.

Proof. (i) \Rightarrow (ii): Let $x \in X$ and F be a σ_i -open set of Y containing f(x). By (i), $f^{-1}(F)$ is (i, j)- ω -preopen in X. Let $A = f^{-1}(F)$. Then $x \in A$ and $f(A) \subset F$.

(ii) \Rightarrow (i): Let F be σ_i -open in Y and let $x \in f^{-1}(F)$. Then $f(x) \in F$. By (ii), there is an (i, j)- ω -preopen set U_x in X such that $x \in U_x$ and $f(U_x) \subset F$. Then $x \in U_x \subset f^{-1}(F)$. Hence $f^{-1}(F)$ is (i, j)- ω -preopen in X.

(i) \Leftrightarrow (iii): This follows due to the fact that for any subset B of Y, $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$.

(iii) \Rightarrow (iv): Let A be a subset of X. Since $A \subset f^{-1}(f(A))$ we have $A \subset f^{-1}(\sigma_i \cdot (f(A)))$. Now, $\sigma_i \cdot (f(A))$ is σ_i -closed in Y and hence $(i, j) \cdot \omega p(A) \subset f^{-1}(\sigma_i \cdot (f(A)))$, for $(i, j) \cdot \omega p(A)$ is the smallest $(i, j) \cdot \omega - preclosed$ set containing A. Then $f((i, j) \cdot \omega p(A)) \subset \sigma_i \cdot (f(A))$.

(iv) \Rightarrow (iii): Let F be any σ_i -closed subset of Y. Then $f((i, j) \cdot \omega p(f^{-1}(F))) \subset \sigma_i \cdot (f(f^{-1}(F))) \subset \sigma_i \cdot (F) = F$. Therefore, $(i, j) \cdot \omega p(f^{-1}(F)) \subset f^{-1}(F)$. Consequently, $f^{-1}(F)$ is $(i, j) \cdot \omega$ -preclosed in X.

(iv) \Rightarrow (v): Let *B* be any subset of *Y*. Now, $f((i, j) - \omega p(f^{-1}(B))) \subset \sigma_i - (f(f^{-1}(B))) \subset \sigma_i - (B)$. Consequently, $(i, j) - \omega p(f^{-1}(B)) \subset f^{-1}(\sigma_i - (B))$.

(v) \Rightarrow (iv): Let B = f(A) where A is a subset of X. Then, (i, j)- $\omega p(A) \subset (i, j)$ - $\omega p(f^{-1}(B)) \subset f^{-1}(\sigma_i - (B)) = f^{-1}(\sigma_i - (f(A)))$. This shows that $f((i, j) - \omega p(A)) \subset \sigma_i - (f(A))$.

(i) \Rightarrow (vi): Let C be any subset of Y. Clearly, $f^{-1}(\sigma_i - (C))$ is $(i, j) - \omega$ -preopen and we have $f^{-1}(\sigma_i - (C)) \subset (i, j) - \omega p(f^{-1}\sigma_i - (C)) \subset (i, j) - \omega p(f^{-1}(C))$.

(vi) \Rightarrow (i): Let B be a σ_i -open set in Y. Then σ_i -(B) = B and $f^{-1}(B) \subset$

 $f^{-1}(\sigma_{i}(B)) \subset (i, j) - \omega p(f^{-1}(B))$. Hence we have $f^{-1}(B) = (i, j) - \omega p(f^{-1}(B))$. This shows that $f^{-1}(B)$ is $(i, j) - \omega$ -preopen in X. \Box

Definition 3.4. A collection $\{U_{\alpha} : \alpha \in \Delta\}$ of (i, j)-preopen sets in a bitopological space (X, τ_1, τ_2) is called an (i, j)-preopen cover of a subset B of X if $B \subset \cup \{U_{\alpha} : \alpha \in \Delta\}$ holds.

Definition 3.5. A bitopological space (X, τ_1, τ_2) is said to be (i, j)-preLindelöf if every (i, j)-preopen cover of X has a countable subcover. A subset A of a bitopological space X is said to be (i, j)-preLindelöf relative to X if every cover of A by (i, j)-preopen sets of X has a countable subcover.

Theorem 3.6. If X is a bitopological space such that every (i, j)-preopen subset is (i, j)-preLindelöf relative to X, then every subset is (i, j)-preLindelöf relative to X.

Proof. Let *B* be an arbitrary subset of *X* and let $\{U_{\alpha} : \alpha \in \Delta\}$ be (i, j)-preopen cover of *B*. Then the family $\{U_{\alpha} : \alpha \in \Delta\}$ is an (i, j)-preopen cover of the (i, j)-preopen set $\cup \{U_{\alpha} : \alpha \in \Delta\}$. Hence by hypothesis there is a countable subfamily $\{U_{\alpha_i} : i \in N\}$ which covers $\cup \{U_{\alpha} : \alpha \in \Delta\}$. This subfamily is also a cover of the set *B*. \Box

Theorem 3.7. For any bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (i) X is (i, j)-preLindelöf.
- (ii) Every countable cover of X by (i, j)- ω -preopen sets has a countable subcover.

Proof. $(i) \Rightarrow (ii)$: Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any cover of X by (i, j)- ω -preopen sets of X. For each $x \in X$, there exists $\alpha(x) \in \Delta$ such that $x \in U_{\alpha(x)}$. Since $U_{\alpha}(x)$ is (i, j)- ω -preopen, there exists an (i, j)-preopen set $V_{\alpha(x)}$ such that $x \in V_{\alpha(x)}$ and $V_{\alpha(x)} \setminus U_{\alpha(x)}$ is countable. The family $\{V_{\alpha(x)} : x \in X\}$ is an (i, j)-preopen cover of X and X is (i, j)-preLindelöf. There exists a countable subset, say $\alpha(x_1), \alpha(x_2), \dots, \alpha(x_n), \dots$ such that $X = \cup \{V_{\alpha(x_i)} : i \in N\}$. Now, we have $X = \bigcup_{i \in N} \{V_{\alpha(x_i)} \setminus U_{\alpha(x_i)}) \cup U_{\alpha(x_i)}\}$ $= (\bigcup_{i \in N} (V_{\alpha(x_i)} \setminus U_{\alpha(x_i)}) \cup (\bigcup_{i \in N} U_{\alpha(x_i)}))$. For each $\alpha(x_i), V_{\alpha(x_i)} \setminus U_{\alpha(x_i)}$ is a countable set and there exists a countable subset $\Delta_{\alpha(x_i)}$ of Δ such that $V_{\alpha(x_i)} \setminus U_{\alpha(x_i)} \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_{\alpha(x_i)}\}$. Therefore, we have $X \subset \bigcup_{i \in N} (\bigcup \{U_{\alpha} : \alpha \in \Delta_{\alpha(x_i)}\}) \cup (\bigcup_{i \in N} U_{\alpha(x_i)})$. (*ii*) \Rightarrow (*i*): Since every (*i*, *j*)-preopen is (*i*, *j*)- ω -preopen, the proof is obvi-

ous. \Box

Definition 3.8. A bitopological space (X, τ_1, τ_2) is called pairwise Lindelöf [1] if each pairwise open cover of X has a countable subcover.

Theorem 3.9. Let f be an (i, j)- ω -precontinuous function from a space (X, τ_1, τ_2) onto a space (Y, σ_1, σ_2) . If X is (i, j)-preLindelöf, then Y is pairwise Lindelöf.

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be a countable cover of Y by σ_i -open sets. Then $\{f^{-1}(V_{\alpha}) : \alpha \in \Lambda\}$ is an (i, j)- ω -preopen cover of X. Since X is (i, j)-preLindelöf, there exists a countable subset Λ_0 of Λ such that $X = \bigcup\{f^{-1}(V_{\alpha}) : \alpha \in \Lambda_0\}$; hence $Y = \bigcup\{V_{\alpha} : \alpha \in \Lambda_0\}$. Therefore Y is pairwise preLindelöf. \Box

Definition 3.10. A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be:

- (i) (i, j)- ω -preopen if f(U) is a (i, j)- ω -preopen set of Y for every τ_i -open set U of X.
- (ii) (i, j)- ω -preclosed if f(U) is a (i, j)- ω -preclosed set of Y for every τ_i closed set U of X.

Theorem 3.11. For a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following statements are equivalent:

- (i) f is (i, j)- ω -preopen;
- (ii) $f(\tau_i (U)) \subset (i, j) \omega p(f(U))$ for each subset U of X;
- (iii) τ_i - $(f^{-1}(V)) \subset f^{-1}((i, j) \cdot \omega p(V))$ for each subset V of Y.

Proof. $(i) \Rightarrow (ii)$: Let U be any subset of X. Then τ_i -(U) is a τ_i -open set of X. Then $f(\tau_i$ -(U)) is a (i, j)- ω -preopen set of Y. Since $f(\tau_i$ - $(U)) \subset f(U)$, $f(\tau_i$ -(U)) = (i, j)- $\omega p(f(\tau_i$ - $(U))) \subset (i, j)$ - $\omega p(f(U))$. $(ii) \Rightarrow (iii)$: Let V be any subset of Y. Then $f^{-1}(V)$ is a subset of X. Hence $f(\tau_i$ - $(f^{-1}(V))) \subset (i, j)$ - $\omega p(f(f^{-1}(V))) \subset (i, j)$ - $\omega p(V)$. Then τ_i -

 $(f^{-1}(V)) \subset f^{-1}(f(\tau_i - (f^{-1}(V)))) \subset f^{-1}((i, j) - \omega p(V)).$ $(iii) \Rightarrow (i)$: Let U be any τ_i -open set of X. Then $\tau_i - (U) = U$ and f(U) is a subset of Y. Now, $V = \tau_i - (V) \subset \tau_i - (f^{-1}(f(V))) \subset f^{-1}((i, j) - \omega p(f(V))).$ Then $f(V) \subset f(f^{-1}((i, j) - \omega p(f(V)))) \subset (i, j) - \omega p(f(V))$ and $(i, j) - \omega p(f(V)) \subset f(V)$. Hence f(V) is an $(i, j) - \omega$ -preopen set of Y; hence f is $(i, j) - \omega$ -preopen. \Box

Theorem 3.12. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function. Then f is an (i, j)- ω -preclosed function if and only if for each subset V of X, (i, j)- $\omega p(f(V)) \subset f(\tau_i - (V))$.

Proof. Let f be an (i, j)- ω -preclosed function and V any subset of X. Then $f(V) \subset f(\tau_i - (V))$ and $f(\tau_i - (V))$ is an (i, j)- ω -preclosed set of Y. We have (i, j)- $\omega p(f(V)) \subset (i, j)$ - $\omega p(f(\tau_i - (V))) = f(\tau_i - (V))$. Conversely, let V be a τ_i -closed set of X. Then $f(V) \subset (i, j)$ - $\omega p(f(V)) \subset f(\tau_i - (V)) = f(V)$; hence f(V) is an (i, j)- ω -preclosed subset of Y. Therefore, f is an (i, j)- ω -preclosed function. \Box

Theorem 3.13. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a bijection. Then f is an (i, j)- ω -preclosed function if and only if for each subset V of Y, $f^{-1}((i, j)$ - $\omega p(V)) \subset \tau_i$ - $(f^{-1}(V))$.

Proof. Let V be any subset of Y. Then by Theorem 3.12, $(i, j) - \omega p(V) \subset f(\tau_i - (f^{-1}(V)))$. Since f is bijection, $f^{-1}((i, j) - \omega p(V)) = f^{-1}((i, j) - \omega p(f(f^{-1}(V)))) \subset f^{-1}(f(\tau_i - (f^{-1}(V)))) = \tau_i - (f^{-1}(V))$. Conversely, let U be any subset of X. Since f is bijection, $(i, j) - \omega p(f(U)) = f(f^{-1}((i, j) - \omega p(f(U))) \subset f(\tau_i - (f^{-1}(f(U)))) = f(\tau_i - (U))$. Therefore, by Theorem 3.12, f is an $(i, j) - \omega$ -preclosed function. \Box

Theorem 3.14. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an (i, j)- ω -preopen function. If V is a subset of Y and U is a τ_i -closed subset of X containing $f^{-1}(V)$, then there exists an (i, j)- ω -preclosed set F of Y containing V such that $f^{-1}(F) \subset U$. **Proof.** Let V be any subset of Y and U a τ_i -closed subset of X containing $f^{-1}(V)$, and let $F = Y \setminus (f(X \setminus U))$. Then $f(X \setminus U) \subset f(f^{-1}(Y \setminus V)) \subset Y \setminus V$, then $V \subset F$ and $X \setminus U$ is a τ_i -open set of X. Since f is (i, j)- ω -preopen, $f(X \setminus U)$ is an (i, j)- ω -preopen set of Y. Hence F is an (i, j)- ω -preclosed set of Y and $f^{-1}(F) = f^{-1}(Y \setminus (f(X \setminus U)) \subset U$. \Box

Theorem 3.15. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an (i, j)- ω -preclosed function. If V is a subset of Y and U is a τ_i -open subset of X containing $f^{-1}(V)$, then there exists (i, j)- ω -preopen set F of Y containing V such that $f^{-1}(F) \subset U$.

Proof. The proof is similar to that of Theorem 3.14. \Box

References

- P. Fletcher, H. B. Hoyle, and C. W. Patty, The comparison of topologies, Duke Math. J., 36, pp. 325-331, (1969).
- [2] M. Jelic, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math. Ser., 3, pp. 25-29, (1990).
- [3] A. Kar and P. Bhattacharyya, Bitopological preopen sets, precontinuity and preopen mappings, Indian J. Math., **34**, pp. 295-309, (1992).
- [4] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13, pp. 71-89, (1963).
- [5] F. H. Khedr, S. M. Al-Areefi and T. Noiri, Precontinuity and semiprecontinuity in bitopological spaces, Indian J. Pure Appl. Math., 23, pp. 625-633, (1992).
- [6] T. Noiri and V. Popa, On weakly precontinuous functions in bitopological spaces, Soochow J. Math., 33(1), pp. 87-100, (2007).

N. Rajesh Department of Mathematics Rajah Serfoji Govt. College Thanjavur-613005 Tamilnadu, India e-mail : nrajesh_topology@yahoo.co.in

and

Jamal M. Mustafa

Department of Mathematics Al al-Bayt University Mafraq, Jordan e-mail : jjmmrr971@yahoo.com