Proyecciones Journal of Mathematics Vol. 32, N^o 2, pp. 159-171, June 2013. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172013000200005

Some new generalized I-convergent difference sequence spaces defined by a sequence of moduli

M. Aiyub

University of Bahrain, Kingdom of Bahrain Received : July 2012. Accepted : March 2013

Abstract

In this article we introduce the sequence space $c_0^I(F, p, \Delta_v^n)$ and $\ell_{\infty}^I(F, p, \Delta_v^n)$ for the of sequence of modulii $F = (f_k)$ and given some inclusion relations. These results here proved are analogus to those by M. Aiyub [1](Global Journal of Science Frontier Research Mathematics and Decision Sciences 12(9)(2012), 32-36).

AMS Subject Classification (2000) : 40C05, 46A45.

Keywords and phrases : *Ideal, filter, sequence of moduli, difference sequence space, I-convergent sequence space.*

1. Introduction and Preliminaries

Let $\omega, \ell_{\infty}, c_0$ be the set of all sequences of complex numbers, the linear spaces of bounded, convergent and null sequences $x = (x_k)$ with complex terms, respectively, normed by

$$||x||_{\infty} = \sup_{k} |x_k|$$
, where $k \in \mathbf{N} = \{1, 2, 3....\}$.

The idea of difference sequence spaces was introduced by H. Kizmaz [17]. In 1981, Kizmaz defined the sequence spaces as follow;

$$\ell_{\infty}(\Delta) = \{x = (x_k) \in \omega : (\Delta x_k) \in \ell_{\infty}\},\$$
$$c(\Delta) = \{x = (x_k) \in \omega : (\Delta x_k) \in c\},\$$
$$c_0(\Delta) = \{x = (x_k) \in \omega : (\Delta x_k) \in c_0\},\$$

where

$$\Delta x = (x_k - x_{k+1}) \text{ and } \Delta^0 x = (x_k),$$

These are Banach space with the norm

$$\|x\|_{\Delta} = |x_1| + \|\Delta x\|_{\infty}.$$

Later Çolak and Et [4] defined the sequence spaces:

$$\ell_{\infty}(\Delta^{n}) = \{x = (x_{k}) \in \omega : (\Delta^{n} x_{k}) \in \ell_{\infty}\},\$$

$$c(\Delta^{n}) = \{x = (x_{k}) \in \omega : (\Delta^{n} x_{k}) \in c\},\$$

$$c_{0}(\Delta^{n}) = \{x = (x_{k}) \in \omega : (\Delta^{n} x_{k}) \in c_{0}\},\$$
where $n \in \mathbf{N}, \Delta^{0} x = (x_{k}), \Delta x = (x_{k} - x_{k+1}), \quad \Delta^{n} x = (\Delta^{n} x_{k}) = (\Delta^{n-1} x_{k} - \Delta^{n-1} x_{k+1})$

and this generalized difference notion has the following binomial representation.

 $\Delta^n x_k = \sum_{v=0}^n (-1)^v (nv) x_{k+v}$

and showed that these spaces are Banach space with the norm

$$|x||_{\Delta} = \sum_{i=1}^{n} |x_i| + ||\Delta^n x||_{\infty}$$

Esi and Isik [7] defined sequence spaces:

$$\ell_{\infty}(\Delta_v^n, s, p) = \{ x = (x_k) \in \omega : \sup_k k^{-s} |\Delta_v^n x_k|^{p_k} < \infty, s \ge 0 \},\$$

 $c(\Delta_v^n, s, p) = \{ x = (x_k) \in \omega : k^{-s} | \Delta_v^n x_k - L|^{p_k} \to 0 \ (k \to \infty) , s \ge 0, \text{ for some L} \},\$

$$c_0(\Delta_v^n, s, p) = \{ x = (x_k) \in \omega : k^{-s} |\Delta_v^n x_k|^{p_k} \to 0 \ (k \to \infty) \ , s \ge 0 \}$$

Where $v = (v_k)$ is any fixed sequence of non zero complex numbers $n \in \mathbf{N}$ is fixed number.

$$\Delta_v^0 x_k = (v_k x_k), \Delta_v x_k = (v_k x_k - v_{k+1} x_{k+1}) \text{ and } \Delta_v^n x_k = (\Delta_v^{n-1} x_k - \Delta_v^{n-1} x_{k+1}).$$

And this generalized difference notion has the following binomial representation.

 $\Delta_{v}^{n} x_{k} = \sum_{i=0}^{n} (-1)^{i} (ni) v_{k+i} x_{k+i},$

when s = 0, m = 1, v = (1, 1, 1, ...) and $p_k = 1$ for all $k \in \mathbf{N}$, they are just $\ell_{\infty}(\Delta)$, $c(\Delta)$, $c_o(\Delta)$, defined by Kizmaz [17]. When s = 0 and $p_k = 1$ for all $k \in \mathbf{N}$, they are the following sequence spaces defined by Et and Esi [9]

$$\ell_{\infty}(\Delta_v^n) = \{ x = (x_k) \in \omega : (\Delta_v^n x_k) \in \ell_{\infty} \},\$$
$$c(\Delta_v^n) = \{ x = (x_k) \in \omega : (\Delta_v^n x_k) \in c \},\$$
$$c_0(\Delta_v^n) = \{ x = (x_k) \in \omega : (\Delta_v^n x_k) \in c_0 \}.$$

For more development about difference sequence spaces we refer to Bektas and Çolak [2],M.Et[8] and V.A.khan [14-16] The idea of modulus was defined by Nakano [22] in 1953. A function $f:[0,\infty) \to [0,\infty)$ is called a modulus if

- (i) f(t) = 0 if and only if t = 0,
- (*ii*) $f(t+u) \le f(t) + f(u)$, for all $t, u \ge 0$,
- (iii) f is increasing and
- (iv) f is continuous from the right at 0.

Let X be a sequence spaces. Then Ruckle [25-27] defined the sequence space X(f) for a modulus f as

$$X(f) = \{ x = (x_k) \in \omega : (f(|x_k|)) \in X \},\$$

Later Kolk [18,19] gave an extension of X(f) by considering a sequence of moduli $F = (f_k)$, that is

$$X(F) = \{ x = (x_k) \in \omega : (f_k(|x_k|)) \in X \}.$$

Gaur and Mursaleen[13] defined the following sequence spaces:

 $\ell_{\infty}(F,\Delta) = \{x = (x_k) \in \omega : (\Delta x_k) \in \ell_{\infty}(F)\},\$ $c_0(F,\Delta) = \{x = (x_k) \in \omega : (\Delta x_k) \in c_0(F)\}.$

After then Ç.Bektas and R.Çolak [2]defined the following sequence spaces:

$$\ell_{\infty}(F, \Delta^n) = \{ x = (x_k) \in \omega : (\Delta^n x_k) \in \ell_{\infty}(F) \},\$$
$$c_0(F, \Delta^n) = \{ x = (x_k) \in \omega : (\Delta^n x_k) \in c_0(F) \}.$$

Recently Vakeel A Khan [14] defined the following sequence spaces:

$$\begin{aligned} X(F,p) &= \{ x = (x_k) \in \omega : (f(|x_k|)) \in X(p) \}, \\ \ell_{\infty}(F,p) &= \{ x = (x_k) \in \omega : \sup_k f_k(|x_k|^{p_k}) < \infty \}, \\ c_0(F,p) &= \{ x = (x_k) \in \omega : f_k(|x_k|^{p_k}) \to 0 \ (k \to \infty) \}, \\ \ell_{\infty}(F,p,\Delta^n) &= \{ x = (x_k) \in \omega : \Delta^n x \in \ell_{\infty}(F,p) \}, \end{aligned}$$

$$c_0(F, p, \Delta^n) = \{x = (x_k) \in \omega : \Delta^n x \in c_0(F, p)\}.$$

For a sequence of moduli $F = (f_k)$ and gave the necessary and sufficient conditions for the inclusion relations between $X(\Delta^n)$ and $Y(F, \Delta^n)$, where $X, Y = \ell_{\infty}$ or c_0 . Sequence of moduli have been studied by Ç.A.Bektas and R. Çolak[2] and many other authors.

The notion of statistical convergence was introduced by H.Fast[10]. Later on it was studied by J.A.Fridy [11,12] from the sequence space point view and linked with the summability theory.

The notion of I-convergence is a generalization of the statistical convergence. It was studied at initial stage by Kostyrko, Şalat and Wilezynski [20]. Later on it was studied by Şalat [29],Şalat, Tripathy and Ziman [30], Demirci[5]

Let **N** be a non empty set. Then a family of sets $I \subseteq 2^N$ (power set of **N**) is said to be an ideal if I is additive i.e $(A, B) \in I \Rightarrow (A \cup B) \in I$ and i.e $A \in I, B \subseteq A \Rightarrow B \in I$. A non empty family of sets $\pounds(I) \subseteq 2^N$ is said to be filter on N if and only if $\Phi \notin \pounds(I)$ for $A, B \in \pounds(I)$ we have $(A \cap B) \in \pounds(I)$ and for each $A \in \pounds(I)$ and $A \subseteq B$ implies $B \in \pounds(I)$.

An ideal $I \subseteq 2^N$ is called non trivial if $I \neq 2^N$. A non trivial ideal $I \subseteq 2^N$ is called admissible if $\{(x) : x \in N\} \subseteq I$. A non trivial ideal is maximal if there cannot exist any non-trivial ideal $J \neq I$ containing I as a subset. For each ideal I, there exist a filter $\mathcal{L}(I)$ corresponding to I, i.e $\mathcal{L}(I) = \{K \subseteq \mathbf{N} : K^c \in I\}$, where $K^c = N - K$.

Definition 1.1. A sequence $(x_k) \in \omega$ is said to be I-convergent to a number L if for every $\epsilon > 0$. $\{k \in \mathbf{N} : |x_k - L| \ge \epsilon\} \in I$. In this case we write $I - \lim x_k = L$.

Definition 1.2. A sequence $(x_k) \in \omega$ is said to be I-null if L=0. In this case we write $I - \lim x_k = 0$.

Definition 1.3. A sequence $(x_k) \in \omega$ is said to be I-cauchy if for every $\epsilon > 0$, there exist a number $m = m(\epsilon)$ such that $\{k \in \mathbf{N} : |x_k - x_m| \ge \epsilon\} \in I$.

Definition 1.4. A sequence $(x_k) \in \omega$ is said to be I-bounded if there exist M > 0 such that $\{K \in \mathbf{N} : |x_k| \ge M\} \in I$.

We need the following Lemmas.

Lemma 1.5. The condition $\sup_k f_k(t) < \infty, t > 0$ hold if and only if there is a point $t_0 > 0$ such that $\sup_k f_k(t_0) < \infty$ (see [2,13]).

Lemma 1.6. The condition $\inf_k f_k(t) > 0$ hold if and only if there exist is a point $t_0 > 0$ such that $\inf_k f_k(t_0) > 0$ (see [2,13]).

Lemma 1.7. Let $K \in \pounds(I)$ and $M \subseteq N$. If $M \neq I$ then $M \cap K \neq I$ (see [29]).

Lemma 1.8. If $I \subseteq 2^N$ and $M \subseteq N$. If $M \neq I$ then $M \cap K \neq I$ (see [20]).

2. Main results

Let $F = (f_k)$ be a sequence of moduli, $v = (v_k)$ be any sequence such that $v_k \neq 0$ for all k and $p = (p_k)$ be sequence space of strictly positive real numbers then we define the following sequence spaces.

$$c_0^I(F, p, \Delta_v^n) = \{(x_k) \in \omega : I - \lim f_k(|\Delta_v^n x_k|) = 0\},\$$

$$\ell_{\infty}^{I}(F, p, \Delta_{v}^{n}) = \{(x_{k}) \in \omega : I - \sup_{k} f_{k}(|\Delta_{v}^{n} x_{k}|) < \infty\}.$$

Theorem 2.1. For a sequence $F = (f_k)$ of moduli and for all $v = (v_k)$ and $p = (p_k)$ the following statements are equivalent:

- (a) $\ell_{\infty}^{I}(\Delta_{v}^{n}) \subseteq \ell_{\infty}^{I}(F, p, \Delta_{v}^{n}),$
- (b) $c_0^I(\Delta_v^n) \subseteq c_0^I(F, p, \Delta_v^n),$
- (c) $\sup_k f_k(t) < \infty, (t > 0).$

Proof. (a) implies (b) is obvious.

(b) implies (c). Let $c_0^I(\Delta_v^n) \subseteq c_0^I(F, p, \Delta_v^n)$. Suppose that (c) is not true. Then by Lemma (1.5)

$$\sup_{k} f_k(t) = \infty, \text{ for all } t > 0,$$

and therefore there is a sequence (k_i) of positive integers such that

$$f_{k_i}(\frac{1}{i}) > i$$
, for each $i = 1, 2, 3.....$ (1)

Define $x = (x_k)$ as follow

$$x_k = \begin{cases} \frac{1}{i}, & \text{if } k = k_i, i = 1, 2, 3....; \\ 0, & \text{otherwise.} \end{cases}$$

Then $x \in c_0^I(\Delta_v^n)$ but by (1), $x \notin \ell_\infty^I(F, p, \Delta_v^n)$ for $v_k = p_k$ and $k \in \mathbf{N}$ which contradicts (b). Hence (c) must hold. (c) implies (a). Let (c) be satisfied and $x \in \ell_\infty^I(\Delta_v^n)$. If we suppose that $x \notin \ell_\infty^I(F, p, \Delta_v^n)$. Then

$$\sup_{k} f_k(|\Delta_v^n x_k|^{p_k}) = \infty \text{ for } \Delta_v^n x \in \ell_{\infty}^I$$

If we take $t = |\Delta_v^n x_k|^{p_k}$. Then $\sup_k f_k(t) = \infty$ which contradicts (c). Hence $\ell_{\infty}^I(\Delta_v^n) \subseteq \ell_{\infty}^I(F, p, \Delta_v^n)$.

Theorem 2.2. For a sequence $F = (f_k)$ is a sequence of moduli and for all $v = (v_k)$ and $p = (p_k)$ the following statements are equivalent:

- (a) $c_0^I(F, p, \Delta_v^n) \subseteq c_0^I(\Delta_v^n),$
- (b) $c_0^I(F, p, \Delta_v^n) \subseteq \ell_\infty^I(\Delta_v^n),$

M. Aiyub

(c)
$$\inf_k f_k(t) > 0, (t > 0).$$

Proof. (a) implies (b) is obvious.

(b) implies (c). Let $c_0^I(F, p, \Delta_v^n) \subseteq \ell_{\infty}^I(\Delta_v^n)$. Suppose that (c) is not true. Then by Lemma (1.6)

$$\inf_{k} f_k(t) = 0, \quad (t > 0) \tag{2}$$

and therefore there is a sequence (k_i) of positive integers such that

$$f_{k_i}(i^2) < \frac{1}{i}$$
 for each $i = 1, 2, 3....$

Define $x = (x_k)$ as follow

$$x_k = \begin{cases} i^2, \text{ if } k = k_i & i = 1, 2, 3....; \\ 0 & \text{otherwise.} \end{cases}$$

By (2) $x \in c_0^I(F, p, \Delta_v^n)$ but $x \notin \ell_\infty^I(\Delta_v^n)$ for $v_k = (p_k)$ and $k \in \mathbf{N}$ which contradicts (b). Hence (c) must hold. (c) implies (a). Let (c) be satisfied and $x \in c_0^I(F, p, \Delta_v^n)$ that is

$$I - \lim_{k} f_k(|\Delta_v^n x_k|) = 0$$

Suppose that $x \notin c_0^I(\Delta_v^n)$. Then for some number $\epsilon_0 > 0$ and positive integer k_0 we have $|\Delta_v^n x_k| < \epsilon_0$ for $k \ge k_0$. Therefore $f_k(\epsilon_0) \ge f_k(|\Delta_v^n x_k|)$ for $k \ge k_0$ and hence $\lim_k f_k(\epsilon_0) = 0$, which contradicts our assumption that $x \notin c_0^I(\Delta_v^n)$.

Thus $c_0^I(F, p, \Delta_v^n) \subseteq c_0^I(\Delta_v^n).$

Theorem 2.3. The inclusion $\ell_{\infty}^{I}(F, p, \Delta_{v}^{n}) \subseteq c_{0}^{I}(\Delta_{v}^{n})$ holds if and only if

$$\lim_{k} f_k(t) = \infty, \quad \text{for } t > 0.$$
(3)

Proof. Let $\ell_{\infty}^{I}(F, p, \Delta_{v}^{n}) \subseteq c_{0}^{I}(\Delta_{v}^{n})$ such that $\lim_{k} f_{k}(t) = \infty$ for, t > 0 doesn't hold. Then there is a number $t_{0} > 0$ and a sequence (k_{i}) of positive integer such that

$$f_{k_i}(t_0) \le M < \infty. \tag{4}$$

Define the sequence $x = (x_k)$ by

$$x_{k} = \begin{cases} t_{0}, \text{ if } k = k_{i} \ i = 1, 2, 3....; \\ 0, \text{ otherwise.} \end{cases}$$

Thus $x \in \ell_{\infty}^{I}(F, p, \Delta_{v}^{n})$ by (4). But $x \notin c_{0}^{I}(\Delta_{v}^{n})$, for $v_{k} = p_{k}$ and $k \in \mathbb{N}$ so that (3) must hold. If $\ell_{\infty}^{I}(F, p, \Delta_{v}^{n}) \subseteq c_{0}^{I}(\Delta_{v}^{n})$. Conversely, let (3) hold. If $x \in \ell_{\infty}^{I}(F, p, \Delta_{v}^{n})$, then $\lim_{k} f_{k}(|\Delta_{v}^{n}x_{k}|^{p_{k}}) \leq \lim_{k} M < \infty$, for k = 1, 2, 3......Suppose that $x \notin c_{0}^{I}(\Delta_{v}^{n})$. Then for some number $\epsilon_{0} > 0$ and positive integer k_{0} we have

 $|\Delta_v^n x_k| < \epsilon_0$ for $k \ge k_0$. Therefore $f_k(\epsilon_0) \le f_k(|\Delta_v^n x_k|^{p_k}) \le M$ for $k \ge k_0$, which contradicts (3). Hence $x \in c_0^I(\Delta_v^n)$.

Theorem 2.4. The inclusion $\ell_{\infty}^{I}(\Delta_{v}^{n}) \subseteq c_{0}^{I}(F, p, \Delta_{v}^{n})$ holds if and only if

$$\lim_{k} f_k(t) = 0, \text{ for } t > 0.$$
 (5)

Proof. Suppose that $\ell_{\infty}^{I}(\Delta_{v}^{n}) \subseteq c_{0}^{I}(F, p, \Delta_{v}^{n})$ but (5) doesn't hold,

Then

$$\lim_{k} f_k(t_0) = l \neq 0, \text{ for some } t_0 > 0$$
(6).

Define the sequence $x = (x_k)$ by

 $\mathbf{x}_{k} = t_{0} \sum_{v=0}^{k-n} (-1)^{n} (n + k - v - 1k - v)$ for k = 1, 2, 3, ... Then $x \notin c_{0}^{I}(F, p, \Delta_{v}^{n})$ by (6) for $v_{k} = p_{k}$ and $k \in \mathbf{N}$. Hence (5) must hold.

Conversely, let $x \in \ell_{\infty}^{I}(\Delta_{v}^{n})$ and suppose that (5) holds. Then $|\Delta_{v}^{n}x_{k}| \leq M < \infty$ for k = 1, 2, 3... There for $f_{k}(|\Delta_{v}^{n}x_{k}|) \leq f_{k}(M)$ for k = 1, 2, 3... and $\lim_{k} f_{k}(|\Delta_{v}^{n}x_{k}|) \leq \lim_{k} f_{k}(M) = 0$ by (5). Hence $x \in c_{0}^{I}(F, p, \Delta_{v}^{n})$

References

- M. Aiyub, Some generalized I-convergent difference sequence spaces defined by a Moduli sequence, G. J. S. F. R. Math., 12 (9), pp. 32-36, (2012).
- [2] Ç. A. Bektas, R. Çolak, Generalized difference sequence spaces defined by a sequence of moduli, Soochow. J. Math., 29 (2), pp. 215-220, (2003).
- [3] V. K. Bhardwaj and N. Singh, On some sequence spaces defined by a modulus, Indian J. Pure Appl. Math., 30, pp. 809-817, (1999).
- [4] R.Çolak and M. Et, On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J., 26 (3), pp. 483-492, (1997).
- [5] K. Demirci, I-limit superior and limit inferior, Math.Commun., 6(, pp. 165-172, (2001).
- [6] K. Dems, On I-Cauchy sequences, Real Analysis Exchange., 30, pp. 123-128, (2005).

- [7] A. Esi and M.Isik, Some generalized difference sequence spaces, Thai J. Math.,3(2), pp. 241-247, (2005).
- [8] M. Et, On some topological properties of generalized difference sequence spaces, Internat J. Math, Math.Soc., 24 (11), pp. 785-791, (2000).
- [9] M. Et and A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull Malysian Math., 31, pp. 275-278, (1980).
- [10] H. Fast, Sur Ia convergence statistique, Colloq. Math., 2, pp. 241-244, (1951).
- [11] J.A. Fridy, On statistical convergence, Analysis., 5, pp. 301-313, (1985).
- [12] J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc., 11, pp. 1187-1192, (1993).
- [13] A. K. Gaur and M. Mursaleen, Difference sequence spaces defined by a sequence of moduli, Demonstratio Math., 31, pp. 275-278, (1998).
- [14] V. A. Khan, Some inclusion relations between the difference sequence spaces defined by sequence of moduli, J. Indian. Math. Soc., 73 (1-2), pp. 77-81, (2006).
- [15] V. A. Khan, Some new generalized difference sequence spaces defined by a sequence of Moduli, App. Math. J. Chinese. Univ., 26 (11), pp. 104-108, (2006).
- [16] V. A. Khan and K. Ebadullah, I-convergent difference sequence spaces defined by a sequence of Moduli. j. Math. Comput. Sci., 2 (2), pp. 265-273, (2012).
- [17] H. Kizmaz, On certain sequence spaces, Canadian Math. Bull., 24, pp. 169-176, (1981).
- [18] E. Kolk, On strong boundedness and summability with respect to a sequence of moduli, Acta Comment. Univ. Tartu., 960, pp. 41-50, (1993).
- [19] E. Kolk, Inclusion theorems for some sequence spaces defined by a sequence of modulii, Acta Comment. Univ. Tartu., 970, pp. 65-72, (1994).

- [20] P. Kostyrko, T.Şalat and W. Wilczynski, I-Convergence, Real Analysis Exchange., 26, pp. 669-686, (2000).
- [21] I. J. Maddox, Sequence spaces defined by a modulus, Math. Camb. Phil. Soc., 100, pp. 161-166, (1986).
- [22] H. Nakano, Concave modulars, J.Math Soc. Japan., 5, pp. 29-49, (1953).
- [23] K. Raj and S. K. Sharma., Difference sequence spaces defined by sequence of modulus function, Proyectiones Journal of Mathematics., 30, pp. 189-199, (2011).
- [24] K. Raj and S. K. Sharma., Some difference sequence spaces in a 2normed spaces using ideal convergence and Musielak Orlicz function, Far East Journal of Mathematical Sciences, 54(2), pp. 149-161, (2011).
- [25] W. H. Ruckle, On perfect Symmetric BK-spaces, Math. Ann., 175, pp. 121-126, (1968).
- [26] W. H. Ruckle, Symmetric coordinate space and symmetric bases, Canad, J. Math., 19,pp. 828-838, (1967).
- [27] W. H. Ruckle, FK-spaces in which the sequence of coordinate vectors is bounded Canad. J. Math., 25(5), pp. 973-975, (1973).
- [28] E. Savas, On some generalized sequence spaces defined by a modulus, Indian J. Pure Appl. Math., 30, pp. 459-464, (1999).
- [29] T. Şalat, On statistically convergent sequences of real numbers, Math. Slovaca., 30, pp. 139-150, (1980).
- [30] T. Şalat, B. C. Tripathy and M.Ziman, On some properties of Iconvergence, Tatra Mt. Math.Publ., 28, pp. 279-286, (2004).
- [31] B. C. Tripathy, B. Hazarika, Paranorm I-convergent sequence spaces, Math. Slovaca, 59(4), pp. 485-494, (2009).
- [32] B. C. Tripathy, B. Hazarika, Some I-convergent sequence spaces defined by orlicz function, Acta Appl. Math. Sinica, 27 (1), pp. 149-154, (2011).

M. Aiyub Department of Mathematics, University of Bahrain, P.O. Box-32038, Kingdom of Bahrain e-mail : maiyub2002@gmail.com