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Abstract

Some new connectivity concepts in weighted graphs are introduced
in this article. The concepts of strong arc, partial cutnode, bridge and
block are introduced. Also three different types of cycles namely lo-
camin cycle, multimin cycle and strongest strong cycle are introduced.
Partial blocks in weighted graphs are characterized using strongest
paths. Also a set of necessary conditions for a weighted graph to be
a partial block involving strong cycles and a sufficient condition for a
weighted graph to be a partial block involving strongest strong cycles
are obtained. A new connectivity parameter called cycle connectivity
and a new type of weighted graphs called θ - weighted graphs are intro-
duced and partial blocks in θ - weighted graphs are fully characterized.
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1. Introduction

Weighted graph theory has numerous applications in various fields like clus-
tering analysis, operations research, database theory, network analysis, in-
formation theory, etc. Connectivity concepts play a key role in applications
related with graphs and weighted graphs. Several authors including Bondy
and Fan [1, 2], Broersma, Zhang and Li [9], Mathew and Sunitha [6, 7, 8]
introduced many connectivity concepts in weighted graphs following the
works of Dirac[4] and Grotschel [5].

In this article we introduce some new connectivity concepts in weighted
graphs. In a weighted graph model, for example, in information networks
and electric circuits, the reduction of flow between pairs of nodes is more
relevant and may frequently occur than the total disruption of the flow or
the disconnection of the entire network [6]. This concept is our motivation.
As weighted graphs are generalized structures of graphs, the concepts in-
troduced in this article also generalizes the classic connectivity concepts.

A weighted graphG is one in which every arc e is assigned a nonnegative
number w(e), called the weight of e. The set of all the neighbors of a vertex
v in G is denoted by NG(v) or simply N(v), and its cardinality by dG(v)
or d(v) [3]. The weighted degree of v is defined as dwG(v) =

X
x∈N(v)

w(vx).

When no confusion occurs, we denote dwG(v) by d
w(v). The weight of a cycle

is defined as the sum of the weights of its edges. An unweighted graph can
be regarded as a weighted graph in which every edge e is assigned weight
w(e) = 1. Thus, in an unweighted graph, dw(v) = d(v) for every vertex
v, and the weight of a cycle is simply the length of the cycle. An optimal
cycle is a cycle which has maximum weight[1].

2. Strong Cycles

In a weighted graphG, to each pair of nodes, we can associate a real number
called strength of connectedness. It is evaluated using strengths of differ-
ent paths joining the given pair of nodes. We have a set of new definitions
which are given below.

Definition 1: [7] Let G be a weighted graph. The strength of a path
P of n edges ei, for 1 ≤ i ≤ n, denoted by s(P ), is equal to s(P ) =
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min1≤i≤n{w(ei)}.

Consequently the strength of a cycle C in a weighted graph G is the
minimum of the weights of arcs in C.

Definition 2:[7] Let G be a weighted graph. The strength of connectedness
of a pair of nodes u, v ∈ V (G), denoted by CONNG(u, v) is defined as
CONNG(u, v) = Max{s(P ) : P is a u − v path in G}. If u and v are in
different components of G, then CONNG(u, v) = 0.

Example 1: Consider the following weighted graph G(V,E).

Figure 1 : Strength of connectedness

Here CONNG(a, b) = 3, CONNG(a, c) = 5, CONNG(a, d) = 8,
CONNG(b, c) = 3, CONNG(b, d) = 3, CONNG(c, d) = 5.
Next we have an obvious result.

Proposition 1:[7] Let G be a weighted graph and H, a weighted subgraph
of G. Then for any pair of nodes u, v ∈ G, we have CONNH(u, v) ≤
CONNG(u, v).

Definition 3:[7] A u − v path in a weighted graph G is called a strongest
u− v path if s(P ) = CONNG(u, v).

Definition 4:[7] Let G be a weighted graph. A node w is called a partial
cutnode (p-cutnode) of G if there exists a pair of nodes u, v in G such that
u 6= v 6= w and CONNG−w(u, v) < CONNG(u, v). A connected weighted
graph having no p-cutnodes is called a partial block(p-block).

Marisol Martínez
fig1
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Example 2: Let G(V,E) be the following weighted graph.

Figure 2 : Weighted graph with a p-cutnode

Node b is a partial cutnode since CONNG−b(a, c) = 5 < 9 = CONNG(a, c).
Also note that the path abc is the unique strongest a− c path in G.

Definition 5: [7] Let G be a weighted graph. An arc e = (u, v) is called
a partial bridge(p-bridge) if CONNG−e(u, v) < CONNG(u, v). A p-bridge
is said to be a partial bond (p-bond) if CONNG−e(x, y) < CONNG(x, y)
with at least one of x or y different from both u and v and is said to be a
partial cutbond(p-cutbond) if both x and y are different from u and v.

Example 3: Consider the following weighted graph with four nodes.

Figure 3 : Weighted graph with a p-cutbond

Here all arcs except arc (a, d) are partial bonds. In particular arc (b, c)
is a partial cutbond since CONNG−(b,c)(a, d) = 5 < 8 = CONNG(a, d).

Marisol Martínez
fig2
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Definition 6: [7] Let G be a weighted graph. Then an arc e = (x, y) ∈ E is
called α - strong if CONNG−e(x, y) < w(e), β - strong if CONNG−e(x, y) =
w(e) and a δ - arc if CONNG−e > w(e). A δ - arc e is called a δ∗ - arc if
e is not a weakest arc of G.

Clearly an arc e is strong if it is either α - strong or β - strong. That
is arc (x, y) is strong if its weight is at least equal to the strength of con-
nectedness between x and y in G. If (x, y) is a strong arc, then x and y are
said to be strong neighbors to each other.

Definition 7: [7] A u− v path P in G is called a strong u− v path if all
arcs in P are strong. In particular if all arcs of P are α - strong, then P
is called an α - strong path and if all arcs of P are β - strong, then P is
called a β - strong path.

Definition 8: [7]Let G be a weighted graph and C, a cycle in G. C is
called a strong cycle if all arcs in C are strong.

Example 4: Let G(V,E) be a weighted graph with V = {a, b, c, d} and
E = {e1 = (a, b), e2 = (b, c), e3 = (c, d), e4 = (d, a), e5 = (a, c)} with
w(e1) = 7, w(e2) = 8, w(e3) = 2, w(e4) = 2, w(e5) = 4.

Figure 4 : α -strong, β - strong and δ- arcs

Here, (a, b) and (b, c) are α -strong, (c, d) and (d, a) are β - strong
and arc (a, c) is a δ- arc. Clearly arc (a, c) is δ∗ since it is not a weakest
arc in G. Also P1 = abc is an α -strong path, P2 = cda is a β - strong
path. In G,C1 = abcda is a strong cycle but C2 = abca is not a strong cycle.

Theorem 1: A connected weighted graph G is a partial block if and only
if any two nodes u, v ∈ V (G) such that (u, v) is not α - strong are joined

Marisol Martínez
fig4
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by two internally disjoint strongest paths.

Proof: Suppose that G is a partial block. Let u, v ∈ V (G) such that (u, v)
is not α - strong. To show that there exist two internally disjoint strongest
u − v paths. Suppose not. That is there exist exactly one internally dis-
joint strongest u− v path in G. Since (u, v) is not α - strong, length of all
strongest u− v paths must be at least two (Note that if (u, v) is β -strong,
then there exist two internally disjoint u− v paths, which is not possible).
Also for all strongest u− v paths in G, there must be a node in common.
Let w be such a node in G. Then,

CONNG−w(u, v) < CONNG(u, v), which contradicts the fact that G
has no p-cutnodes.
Conversely suppose that any two nodes of G are joined by two internally
disjoint strongest paths. Let w be a node in G. For any pair of nodes,
x, y ∈ V (G) such that x 6= y 6= w, there always exist a strongest path not
containing w. So w cannot be a p-cutnode and the theorem is proved.

Theorem 2: Let G be a connected weighted graph and let x and y be any
two nodes in G. Then there exists a strong path from x to y.

Proof: Suppose that G is a connected weighted graph. Let x and y be any
two nodes of G. If arc (x, y) is strong, there is nothing to prove. Other-
wise, either (x, y) is a δ - arc or there exist a path of length more than
one from x to y. In the first case we can find a path P (say) such that
s(P ) > w((x, y)). In either case consider the path from x to y of length
more than one. If some arc on this path is not strong, replace it by a path
having more strength. This argument cannot be repeated arbitrary often;
hence eventually we can find a path from x to y on which all the arcs are
strong.

Theorem 3: If Gis a partial block then the following conditions hold and
are equivalent.

(i)Every two nodes of G lie on a common strong cycle.

(ii) Each node and a strong arc of G lie on a common strong cycle.

(iii) Any two strong arcs of G lie on a common strong cycle.
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(iv) For two given nodes and a strong arc in G there exists a strong
path joining the nodes containing the arc.

(v) for every three distinct nodes of G there exist strong paths joining
any two of them containing the third.

(vi) For every three nodes of G there exist strong paths joining any two
of them which does not contain the third.

Proof:

(i) Suppose that G is a partial block. Let u and v be any two nodes in
G such that there exists a unique strong path between u and v.
Now two cases arise.
(1) (u, v) is a strong arc.
(2) (u, v) is either a δ-arc or there exist a u − v path of length more than
two in G.

Case 1: (u, v) is a strong arc.

Since (u, v) is not on any strong cycle, (u, v) is an arc in every maximum
spanning tree of G and hence it is a partial-bridge. If u is an end node in
all Maximum Spanning Trees, then clearly v is a p-cutnode in G or vice
versa contradicting our assumption that G is a partial block. Now suppose
that u is an end node in some MST T1 and v is an end node in some MST
T2. Let u

0 be a strong neighbor of u in T2. Since u is an end node and v
is an internal node in T1, there exists a strong path P in T1 from u to u0

passing through v. The path P together with the strong arc (u, u0) forms
a strong cycle in G, a contradiction.

Case 2: Either (u, v) is a δ-arc or there exist a strong u− v path of length
more than two in G.

If (u, v) is a δ-arc, then there exists a strong path between u and v.
Since there is a unique strong (u, v)path P in G, P belongs to all maxi-
mum spanning trees. Thus all internal nodes in P are internal nodes in all
the maximum spanning trees and hence all of them are partial cut nodes
in G, contradiction to the assumption that G is a partial block.
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(i) ⇒ (ii) Suppose that every two nodes of G lie on a common strong
cycle. To prove that a given node and a strong arc lie on a common strong
cycle. Let u be a node and vw be an arc in G. Let C be a strong cycle
containing u and v. If w is a neighbor of v in C, then there is nothing to
prove. Now suppose that w is not a neighbor of v in C. Let C1 be a strong
cycle containing u and w. Let P1 and P2 be the strong u − v paths in C
and P 01 and P 02 the strong u− w paths in C1.

Let x1 be the node at which P 01 leaves P1. Then clearly
u...(P1)...x1...(P

0
1)...wv...(P2)u is a strong cycle containing u and vw . If

x = u then u..(P 01))..wv..(P2)..u is the required cycle. If x1 = v,let x2 be
the node at which P 02 leaves P2. Then u..(P1)..vw....(P

0
2)..x2..(P2)u is the

required strong cycle. If x2 = u then u..(P 02)..wv..(P1)..uis the required
strong cycle. Since P1 and P2 are internally disjoint both x1 and x2 cannot
be the node v.

(ii) ⇒ (iii) Suppose that each node and strong arc lies on a common
strong cycle. To prove any two strong arcs lie on a common strong cycle.
Let uv and xy be two strong arcs of G. Let P1 and P2 be two internally
disjoint strong paths between v and xand Q1 and Q2 be two internally
disjoint strong paths between u and y. If P1, P2, Q1 and Q2 are inter-
nally disjoint, then uv...(P1)...xy...(Q2)...u is a strong cycle containing uv
and xy. If Q1 and Q2 intersectP1or P2, then a strong cycle containing uv
and xy can be extracted from the parts of the four cycles P1, P2, Q1 and Q2.

(iii)⇒ (iv) Let x and y be two nodes and let (u, v) be a strong arc in
G. Let x0 be a strong neighbor of x and y0 be a strong neighbor of y. Now
there exist a strong cycles C1 containing xx

0 and uv and a strong cycle C2
containing yy0 and uv. Now xx0...(C1)...uv...(C2)...y0y is a strong x−y path
containing the arc uv.

(iv) ⇒ (v) Let G be a f-block. Let u, v, w be three distinct nodes of
G. Let v0 be a strong neighbor of v. Then u and w are distinct nodes and
vv0 is a strong arc of G. By (iv) there exists a strong path from u to w
containing the arc uv0(Even if v0 = u or w). Thus we have a strong path
between the two given nodes containing the third.

(v) ⇒ (vi) Let u, v, w be three distinct nodes of G. Let P be a strong
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path between u and w containing v. Then clearly the u−v strong sub path
say P 0 does not contain w.

(vi) ⇒ (i) Let u and v be two given nodes. Let w be a third node in
G. Let P1 be the strong path joining u and v not containing w. Let P2 be
the strong path joining u and w not containing v and let P3 be the strong
path joining v and w not containing u. Then P1

S
P2
S
P3 will contain a

strong cycle containing u and v.

Remark 1: The conditions given in Theorem 3 are only necessary, not
sufficient for a weighted graph to be a p- block as seen from the following
example.

Example 5 : Let G(V,E) be a weighted graph with V = {a, b, c, d} and E =
{e1 = (a, b), e2 = (b, c), e3 = (c, d), e4 = (d, a)} with w(e1) = 10, w(e2) =
9, w(e3) = 8, w(e4) = 8.

Figure 5 : p-block not satisfying the condition of Theorem.3

In this graph, all arcs are strong. So any two nodes of G lies on a com-
mon strong cycle. But b is a partial cutnode. So it is not a p-block.

Definition 9:A cycle C in a weighted graph G is said to be a locamin cycle
if there exist a weakest arc of G incident on every node of G. C is called
multimim if C has more than one weakest arc of G.

Example 6: Let G(V,E) be a weighted graph with V = {a, b, c, d} and
E = {e1 = (a, b), e2 = (b, c), e3 = (c, d), e4 = (d, a), e5 = (a, c)} with
w(e1) = 10, w(e2) = 9, w(e3) = 8, w(e4) = 8, w(e5) = 12.

Marisol Martínez
fig5




10 Sunil Mathew and M. S. Sunitha

Figure 6 : Multimin and locamin cycles

In G, C1 = acda is both multimin and locamin. C2 = abcda is multimin
but not locamin. C3 = abca is neither multimin nor locamin.

Note that a locamin cycle is always multimin . But multimin cycles or
locamin cycles need not be strong cycle as seen from the following example.

Example 7 : Let G(V,E) be a weighted graph with V = {a, b, c, d, e, f}
and E = {e1 = (a, b), e2 = (b, c), e3 = (c, a), e4 = (a, d), e5 = (d, b), e6 =
(b, e), e7 = (e, c), e8 = (c, f), e9 = (a, f)} with w(e1) = 1, w(e2) = 1, w(e3) =
1, w(e4) = 2, w(e5) = 2, w(e6) = 2, w(e7) = 2, w(e8) = 2, w(e9) = 2.

Figure 7 : Multimin and locamin δ - cycle

In G, C = abca is both multimin and locamin, but it contains only δ -
arcs. That is C is not a strong cycle.

Marisol Martínez
fig6
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3. Strongest Strong Cycles

Definition 10: A cycle C in a weighted graph G is called a strongest
strong cycle(SSC) if C is the union of two strongest strong u− v paths for
every pair of nodes u and v in C except when (u, v) is a p-bridge of G in C.

Note that in the above definition, arc (u, v) can be an p-bridge of G.
But the condition that C is the union of two strongest strong u− v paths
can be relaxed only for those nodes which are the end nodes of p-bridges of
G which are in C. Also, CONNG(x, y) = CONNC(x, y) for all nodes x, y
in C.

Example 8 : Consider the following weighted graph G(V,E) with V =
{a, b, c, d} and E = {e1 = (a, b), e2 = (b, c), e3 = (c, d), e4 = (d, a), e5 =
(a, c)} with w(e1) = 5, w(e2) = 2, w(e3) = 5, w(e4) = 2, w(e5) = 1.

Figure 8 : Strongest strong cycle

In this graph, C = abcda is a strongest strong cycle. There are two
p-bridges of G in C, namely (a, b) and (c, d). We can find two strongest
paths joining any other pair of nodes in C.

A locamin cycle in a weighted graph G need not be an SSC and an SSC
need not be a locamin cycle. But the concepts of locamin cycle and SSC
coincides when G is a cycle as seen from the next Theorem.

Theorem 4: Let G be a weighted cycle. Then the following are equivalent.
(i) G is a p-block.
(ii) G is an SSC.
(iii) G is a locamin cycle.

Marisol Martínez
fig8
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Proof : (i)⇒ (ii)
First assume that G is a p-block. Then by theorem 1, there exist two in-
ternally disjoint strongest u− v paths for all pairs of nodes u, v in G such
that (u, v) is not a p-bridge. Clearly all arcs belonging to these paths are
strong; for otherwise if (x, y) is not strong (ie a δ-arc), then G− (x, y) will
be the only strongest x− y path in G, getting a contradiction.

(ii)⇒ (iii)
Suppose that G is an SSC. If possible suppose that G is not locamin. Then
there exists some node w such that w is not on a weakest arc of G. Let
(u,w) and (w, v) be the two arcs incident on w, which are not weakest arcs.
This implies that the path u,w, v is the unique strongest u− v path in G,
contradiction to the assumption that G is an SSC.

(iii)⇒ (i)
Let G be a locamin cycle. If possible suppose that G has a p-cutnode say w.
Then for some pair of nodes u, v in G, CONNG−w(u, v) < CONNG(u, v).
This implies that there exist a unique strongest path between u and v in
G, which contradicts the assumption that G is an SSC.

Theorem 5: If any two nodes of a weighted graph G lie on common SSC,
then G is a p-block.

Proof : Let G be a weighted graph satisfying the condition of the Theo-
rem. Clearly G is connected. Let w be a node in G. For any two nodes
x and y such that x 6= w 6= y, there exists an SSC containing x and y.
That is there exist two internally disjoint strongest x − y paths in G. At
most one of these paths can contain the node w and hence w cannot be a
p-cutnode of G. Since w is arbitrary, it follows that G is a block.

4. Cycle Connectivity in Weighted Graphs

In graphs, the strength of each cycle is 1. But in weighted graphs it is
possible that cycles of different strengths pass through different pairs of
nodes. In this section, we define two new connectivity concepts in weighted
graphs, namely θ - evaluation and cycle connectivity CG

u,v. Using these,
a new type of weighted graphs called θ - weighted graphs are defined and
p-blocks in θ - weighted graphs are fully characterized.
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Definition 11: Let G be a weighted graph. Then for any two nodes u and
v of G, there associated a set say θ(u, v) called the θ - evaluation of u and
v and is defined as θ(u, v) = {α : where α is the strength of a strong cycle
passing through both u and v.}

If there is no strong cycle containing both u and v, then define θ(u, v) = φ.

Definition 12: Max{α : α ∈ θ(u, v);u, v ∈ V (G)} is defined as the cycle
connectivity between u and v in G and is denoted by CG

u,v. If θ(u, v) = φ
for some pair of nodes u and v, we define the cycle connectivity between u
and v to be 0.

Example 9 : Let G(V,E) be a weighted graph with V = {a, b, c, d} and
E = {e1 = (a, b), e2 = (b, c), e3 = (c, d), e4 = (d, a), e5 = (a, c)} with
w(e1) = 3, w(e2) = 3, w(e3) = 5, w(e4) = 7, w(e5) = 5.

Figure 9 : Cycle connectivity

In this graph, there are three cycles passing through a and c. They are
C1 = abca, C2 = acda and C3 = abcda. Also s(C1) = 3, s(C2) = 5 and
s(C3) = 3. Here θ(a, c) = {3, 5} hence CG

a,c = max{3, 5} = 5.

Cycle connectivity is a measure of connectedness of a weighted graph
and it is always less than or equal to the strength of connectedness between
any two nodes u and v. In a graph without weights, the cycle connectivity
of any two nodes u and v is 1 if u and v belongs to a common cycle and 0
otherwise.

Marisol Martínez
fig9
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Definition 13: Let G be a weighted graph. G is said to be a θ - weighted
graph if θ- evaluation of each pair of nodes in G is either empty or a sin-
gleton set. In other words G is called a θ - weighted graph if for each pair
of nodes u and v, either there is no strong cycle passing through u and v
or all strong cycles passing through u and v have the same strength.

Example 10 : Let G(V,E) be a weighted graph with V = {a, b, c, d}
and E = {e1 = (a, b), e2 = (b, c), e3 = (c, d), e4 = (d, a)} with w(e1) =
9, w(e2) = 8, w(e3) = 7, w(e4) = 3.

Figure 10 : Trivial θ - weighted graph

Clearly G is a θ - weighted graph as G has no strong cycles. Note that
in G, the arc e4 = (d, a) is not strong.

Example 11 : Let G(V,E) be a weighted graph with V = {a, b, c, d} and
E = {e1 = (a, b), e2 = (b, c), e3 = (c, d), e4 = (d, a), e5 = (a, c)} with
w(e1) = 3, w(e2) = 2, w(e3) = 2, w(e4) = 5, w(e5) = 2.

Figure 11 : θ - weighted graph

Marisol Martínez
fig10
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In this graph, the θ- evaluation for any pair of nodes is {2} and hence
G is a θ - weighted graph.

We now show that in a θ - weighted graph which is a p-block, the concepts
of strong path and strongest path coincide and as a result, the concepts of
strong cycle and SSC are also equivalent. Thus all the six necessary and
sufficient conditions for blocks in graphs can be generalized to p-blocks in
weighted graphs

Lemma 1: Let G be a θ - weighted graph which is a block. Then any
strong u− v path such that (u, v) is not a p-bridge is a strongest u− v path
and hence any strong cycle in G is a strongest strong cycle.

Proof: Let G be a θ - weighted graph which is a p-block. Clearly G is
connected. Let u, v ∈ V (G) be such that (u, v) is not a p-bridge. Let P be
a strong u− v path in G. If P is not a strongest u− v path, then since G
is a p-block, there exist two internally disjoint strongest strong u− v paths
say P1 and P2 . Then P1

S
P is a strong cycle with strength less than that

of the cycle P1
S
P2. Both these cycles pass through u and v and hence

θ(u, v) is not a singleton or empty set, which is a contradiction to the fact
that G is a θ - weighted graph. Thus P must be a strongest strong u − v
path.

To prove the second assertion of the lemma, let C be a strong cycle in
G. Let u, v be two nodes in C such that (u, v) is not a p-bridge in C. Then
by first part both these u− v paths in C are strongest u− v paths. Thus
G is a strongest strong cycle.

Theorem 7: Let G be a θ - weighted graph. Then the following statements
are equivalent.

(i) G is a p-block.
(ii) Every two nodes of G lie on a common strongest strong cycle.
(iii) Each node and a strong arc of G lie on a common strongest strong
cycle.
(iv) Any two strong arcs of G lie on a common strongest strong cycle.
(v) For any two given nodes u and v such that (u, v) is not a p-bridge and a
strong arc (x, y) in G, there exists a strongest strong u− v path containing
the arc (x, y).
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(vi) For every three distinct nodes ui, i = 1, 2, 3 of G such that (ui, uj), j =
1, 2, 3 and i 6= j, is not a p-bridge, there exist strongest strong paths joining
any two of them containing the third.
(vii) For every three distinct nodes ui, i = 1, 2, 3 of G such that (ui, uj), j =
1, 2, 3 and i 6= j, is not a p-bridge, there exist strongest strong paths joining
any two of them not containing the third.

Proof:
Theorem 3 and Lemma 1 together give all the required implications

except (vii)⇒ (i).

To prove (vii)⇒ (i), note that for any node w of G and for every pair of
nodes x, y other than w, there exists a strongest x− y path not containing
the node w. Clearly G is connected. Thus node w is not in every strongest
x − y path for all pair of nodes x and y and hence w is not a p-cutnode.
Since w is arbitrary, it follows that G is a p-block.

5. Concluding remarks

Weighted graphs are the precise models of all kinds of networks. Con-
nectivity is the most important concept in the entire graph theory. But in
classical problems connectivity concepts deals with the disconnection of the
networks. The reduction in flow is more frequent than the disconnection.
The authors made an attempt to introduce partial cutnodes, bridges and
blocks dealing with the reduction in the strength of connectedness between
different pairs of nodes in a weighted graph. Also an attempt is made to
characterize partial blocks in weighted graphs using different types of cy-
cles. It is fully characterized in the case of a particular subclass of weighted
graphs.
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